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Introduction

In this preliminary chapter, we start with an informal discussion on free and applied
vectors in R2 and R3, which you have probably already met in the high-school.

We will be sloppy and not completely precise: the intention is to give the gist of some
concepts that will be extended and generalized during the course.

0.1 Geometric vectors in the plane and in the space
Definition 0.1. An applied vector is a segment with a given verse, so it is determined
by an initial point A and an end point B. It will be denoted by −→AB.

An applied vector −→AB describe an absolute movement form point A to point B.
In physics applied vectors are widely used, e.g. a force applied to body or the speed

of an object, and so on.
Remark. An applied vector −→AB is determined by 4 data:

1. the application point A;
2. the direction (of the line passing through A and B);
3. the verse (following which we move along the line, from A towards B);
4. the magnitude (length of the segment with end-points A and B).

Remark. Note that −→BA has the same direction and magnitude of −→AB but opposite verse!
If we get rid of the application point, we have a relative movement, which is described

by a free vector.

Definition 0.2. A free vector −→v is determined by direction, verse, and magnitude (or
length).

Each applied vector −→AB induces a free vector, which we denote by [−→AB]. On the other
hand, note that a free vector corresponds to infinitely many applied vectors, one for each
possible application point.

Operations with free vectors
We would like to perform operations with free vectors, and so “zero” is of crucial impor-
tance.

Definition 0.3. The zero vector −→0 is the only vector of null magnitude. It does not have
direction or verse. It is the free vector associated to −→AA.
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The first operation we consider is the multiplication of a free vector by a real number
c ∈ R, which we call scalar.

Product with a scalar. Let −→v be a free vector and let c ∈ R.
If c = 0, then c · −→v = −→0 .
If c 6= 0, then c · −→v is the free vector having

(i) the same direction of −→v ;
(ii) the same verse of −→v , if c > 0, and opposite verse if c < 0;

(iii) length equal to the length of −→v multiplied by |c|.

Note that c · −→v is obtained by contracting/dilating and possibly flipping the vector
−→v .

Sum of vectors. The sum of two free vectors is determined with the parallelogram
rule. Given free vectors −→v and −→w , their sum −→v + −→w is obtained in the following way:
apply −→v at the point O and then apply −→w in the head of −→v . If the head of −→w is in Q,
then −→v +−→w = [−→OQ].

Alternatively, apply −→v and −→w at the same point O and consider the parallelogram
having −→v and −→w as two consecutive sides. Then −→v +−→w is the diagonal of the parallelo-
gram.

These two operation satisfy the following properties.

Properties. Let −→v , −→w and −→u be free vectors, and let c, d be real numbers, then
• the sum is associative: (−→v +−→w ) +−→u = −→v + (−→w +−→u );
• the sum is commutative: −→v +−→w = −→w +−→v ;
• the sum has a neutral element: −→v +−→0 = −→0 +−→v = −→v ;

• each vector has an additive inverse: −[−→AB] = [−→BA];
• the product with a scalar is associative: (cd) · −→v = c · (d · −→v );
• the product with a scalar has a neutral element: 1 · −→v = −→v ;
• distributivity: (c+ d) · −→v = c · −→v + d · −→v .
• distributivity: c · (−→v +−→w ) = c · −→v + c · −→w .

Frame
To describe a point in the plane or in three space we can use coordinates.

We consider here the plane R2 and the three dimensional space R3 with the Cartesian
coordinate system (frame).

In R2 the coordinate system is described by a point O (origin), a free vector −→i of
magnitude 1 describing the “ x-axis”, and a free vector −→j of magnitude 1 describing the
“ y-axis” (obtained by −→i with a rotation by π

2 counter-clockwise).
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In R3 the coordinate system is described by a point O (origin), a free vector −→i of
magnitude 1 describing the “x-axis”, a free vector −→j of magnitude 1 describing the “y-
axis” (obtained by −→i with a rotation by π

2 counter-clockwise), and a free vector −→k of
magnitude 1 describing the “z-axis” (obtained by −→i and −→j with right-hand rule).

Summing up, we have fixed the origin O and two/three orthogonal, oriented axes
and chosen a way to measure lengths on these axes. Then the position of each point is
completely determined by taking orthogonal projections onto the axes. We can do the
same with vectors, so we can identify

1. the point P ;

2. the applied vector −→OP ;

3. and the free vector [−→OP ].
Thus, in R3 (and similarly in R2) the free vector −→v = [−→OP ], is described through the

coordinates (xP , yP , zP ) of the end-point P , and indeed it can be expressed as

−→v = xP ·
−→
i + yP ·

−→
j + zP ·

−→
k .

Using coordinates, operations on vectors can be easily performed, e.g. let −→v = 2−→i +
3−→j − 2−→k and −→w = 3−→i − 3−→j + 3−→k , then

−→v +−→w = 5−→i + 0−→j +−→k ;
2−→v = 4−→i + 6−→j − 4−→k .
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Chapter 1

Matrices and Linear Systems

In this chapter we introduce, describe and manipulate two family of objects which will
follow us for the entire course: matrices and linear system.

In each definition, theorem, example, exercise, etc. of this course we have to declare
which numbers we are working with, so we need the concept of field.

Definition 1.1. A field K is a set endowed with two operations: + : K×K→ K (sum)
and · : K×K→ K (product), satisfying the following properties:
F1) ∀a, b, c ∈ K: (a+ b) + c = a+ (b+ c) (associativity of +)
F2) ∀a, b ∈ K: a+ b = b+ a (commutativity of +)
F3) ∃0 ∈ K: a+ 0 = 0 + a = a (neutral element of +)
F4) ∀a ∈ K,∃b ∈ K: a+ b = b+ a = 0 (additive inverse: b = −a)
F5) ∀a, b, c ∈ K: (a · b) · c = a · (b · c) (associativity of ·)
F6) ∀a, b ∈ K: a · b = b · a (commutativity of ·)
F7) ∃1 ∈ K: a · 1 = 1 · a = a (neutral element of ·)
F8) ∀a ∈ K, a 6= 0,∃b ∈ K: a · b = b · a = 1 (multiplicative inverse: b = a−1)
F9) ∀a, b ∈ K: a · (b+ c) = a · b+ a · c (Distributivity of multiplication over sum)

F10) 0 6= 1.
The elements of a field K are called scalars.

Example. i) The natural numbers N = {0, 1, 2, . . .} with the usual sum and multiplication
do not form a field, since there are no additive inverses.

ii) The integers Z = {. . . ,−2,−1, 0, 1, 2, . . .} with the usual sum and multiplication
do not form a field, since there are no multiplicative inverses.

Example. i) The rational numbers Q (“fractions”) and the real numbers R with the usual
sum and multiplication form a field.

ii) The complex numbers C introduced in the course “Mathematical Analysis 1” form
a field as well, and we have a natural chain of inclusions: Q ⊂ R ⊂ C.
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Example. There are fields with a finite numbers of elements! For example K = {0, 1}
with sum and product given by the following tables:

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

1.1 Matrices
Definition 1.2. Let m,n be positive integers and let K a field.
A m× n matrix (or matrix of type (m,n)) with coefficients in K is a table of elements of
K arranged in m rows and n columns.
We denote by MK(m,n) the set of all m× n matrices with coefficients in K.

Notation. Other common notations for the set of all m× n matrices with coefficients
in K are Mm×n(K), MatK(m,n) or Mat(m× n,K).

Example. K = R, m = 2, n = 4.(
−1 0 2 π

0
√

2 −2/3 6

)
∈MR(2, 4)

In general, to represent a matrix A, we use the following notation:

A =


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

... ... . . . ...
am,1 am,2 . . . am,n

 = (ai,j)

So ai,j is the element on the i-th row and j-th column. This element can also be
denoted by (A)i,j.

Terminology:
• m = n = 1. A = (a1,1), so we have a natural bijection MK(1, 1)“=”K.
• m = n. A matrix of type (n, n) is called a square matrix.
• m = 1, n > 1. A = (a1,1 a1,2 . . . a1,n) is called row vector (of length n).

A row vector depends on n choices of elements in K, so MK(1, n) is naturally in
bijection with the cartesian product

Kn = K×K× · · ·K︸ ︷︷ ︸
n−times

= {(k1, k2, . . . , kn) : ki ∈ K}

• m > 1, n = 1. A =


a1,1
a2,1

...
am,1

 is called column vector (of height m).

As for row vectors, we have a natural bijection between the set of column vectors
MK(m, 1) and Km, as each column vector depends on m elements of K.
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1.1.1 Matrix operations
Equality

Let A ∈ MK(m,n) and B ∈ MK(p, q) be two matrices. To be equal A and B must
be of the same type: m = p and n = q, and have the same entries: ai,j = bi,j ∀i =
1, . . . ,m ,∀j = 1, . . . , n.

Sum of matrices

Let A,B ∈ MK(m,n) be matrices of the same type, then we define their sum A + B
as the matrix in MK(m,n), obtained by adding componentwise the entries of A and B.
Formally

+ :MK(m,n)×MK(m,n) −→ MK(m,n)
(A,B) 7−→ (A+B) = (ai,j + bi,j)

Example.

K = Q,m = 2, n = 3,
(

1 3 2
0 2 −4

)
+
(
−1 3 6
1 0 0

)
=
(

0 6 8
1 2 −4

)
Remark. The sum is defined only for matrices of the same type.

It is easy to check that the sum of matrices inherits all properties of the sum in K:
Properties. The sum of matrices satisfies the following properties.

• Associativity: ∀A,B,C ∈MK(m,n): (A+B) + C = A+ (B + C).
• Commutativity: ∀A,B ∈MK(m,n): A+B = B + A.
• The neutral element is the zero matrix O ∈MK(m,n): (O)i,j = 0.
• The additive inverse of A = (ai,j) ∈MK(m,n) is the matrix A′ = (a′i,j) ∈MK(m,n),

with A+ A′ = O, namely a′i,j = −ai,j.

Product of a matrix by a scalar

Let A ∈ MK(m,n) be a matrix and k ∈ K a scalar. Multiplying each entry of A by the
scalar k we get a new matrix kA ∈MK(m,n). Formally

· : K×MK(m,n) −→ MK(m,n)
(k,A) 7−→ (kA) = (kai,j)

Example.

K = Q,m = 2, n = 3, −2 ·
(

1 3 2
0 2 −4

)
=
(
−2 −6 −4
0 −4 8

)
It is straightforward to verify the following properties.

Properties. The product of a matrix by a scalar satisfies the following properties.
• Associativity: ∀k1, k2 ∈ K ,∀A ∈MK(m,n): k1 · (k2 · A) = (k1 · k2) · A.
• 1 ∈ K is the neutral element: 1 · A = A.
• Distributivity: ∀k1, k2 ∈ K ,∀A ∈MK(m,n): (k1 + k2) · A = k1 · A+ k2 · A
• Distributivity: ∀k ∈ K ,∀A,B ∈MK(m,n): k · (A+B) = k · A+ k ·B.

Remark. Note that A+ (−1 · A) = O, so the additive inverse of A is (−1 · A) = −A.
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Matrix multiplication (row-column)

We define now the product of two matrices.

· :MK(m, p)×MK(p, n) −→ MK(m,n),
(A,B) 7−→ A ·B

as
(A ·B)i,j = ai,1 · b1,j + ai,2 · b2,j + · · ·+ ai,n · bn,j =

p∑
l=1

(ai,l · bl,j)

Remark. Note that we do not require that A and B are of the same type, but we require
that the number of columns of A coincides with the number of rows of B, otherwise AB
is not defined.

The resulting matrix has as many rows as A and as many columns as B.

Example. Let A = (a1,1 . . . a1,p) ∈MK(1, p) and B =


b1,1

...
bp1

 ∈MK(p, 1).

Then C = AB ∈MK(1, 1), and c1,1 =
p∑
l=1

(a1,l ·bl,1) = a1,1 ·b1,1+a1,2 ·b2,1+· · ·+a1,n ·bn,1.

For example (K = Q, p = 3)

(1, 2, 3) ·

 0
1
−1

 = (0 · 1 + 2 · 1 + 3 · (−1)) = (−1)

This is called row-column multiplication. In general we have to perform it mn times
to determine A · B, indeed the element (A · B)i,j is obtained multiplying the i-th row of
A with the j-th column of B.

Example. i) Let A ∈MQ(2, 3) and B ∈MQ(3, 2) be the matrices

A =
(

1 3 2
0 2 −4

)
, B =

−1 1
3 0
6 0


To compute C = AB we have to perform 4 row-column multiplication, e.g. c1,2 is obtain
by the row-column multiplication of the 1st row of A with the 2nd column of B:

(
1 3 2
0 2 −4

)
·

−1 1
3 0
6 0

 =
(

1 · (−1) + 3 · 3 + 2 · 6 1 · 1 + 3 · 0 + 2 · 0
0 · (−1) + 2 · 3 + (−4) · 6 0 · 1 + 2 · 0 + (−4) · 0

)
=
(

20 1
−18 0

)

ii) Let A ∈ MQ(2, 3) as above and let B′ =
(
−1 3 6
1 0 0

)
∈ MQ(2, 3), then the product

A ·B′ is not defined, since A has 3 columns, but B′ has only 2 rows.
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Definition 1.3. The identity matrix In is the square matrix In ∈MK(n, n) having:

(In)i,j =
{

1 if i = j
0 if i 6= j

In =



1 0 0 · · · 0 0
0 1 0 · · · 0 0
... ... . . . ...
0 0 0 · · · 1 0
0 0 0 · · · 0 1


In a square matrix, the position with row-index equal to the column-index form the

diagonal.

The matrix product satisfies the following properties, which are easy to verify (only
the first one needs a bit of work).

Properties. The matrix product satisfies the following properties:
• Associativity: ∀A ∈ MK(m,n), B ∈ MK(n, p), C ∈ MK(p, q) it holds (AB)C =
A(BC).

• Distributivity: ∀A ∈ MK(m,n), B1, B2 ∈ MK(n, p) it holds A(B1 + B2) = AB1 +
AB2.
And ∀A1, A2 ∈MK(m,n), B ∈MK(n, p) it holds (A1 + A2)B = A1B + A2B.

• Neutral element: ∀A ∈MK(m,n), it holds A · In = A and Im · A = A.
• (Mixed) associativity: ∀A ∈ MK(m,n), B ∈ MK(n, p), k ∈ K it holds k(AB) =

(kA)B = A(kB).

What about the commutativity?
Remark. In general, the matrix multiplication is not commutative!

Let A ∈MK(m, p) and B ∈MK(p, n).
i) AB ∈MK(m,n), but BA is not even defined if m 6= n.
ii) Assume then that m = n so both AB and BA are defined: AB ∈ MK(m,m) and

BA ∈MK(p, p). If p 6= m, the two matrices are of different type, so they are different.
iii) Assume then that m = n = p so AB,BA ∈ MK(n, n). Also in this case AB and

BA can be different, e.g. K = Q, m = n = p = 2:

A =
(

1 1
0 0

)
, B =

(
1 0
1 0

)
then AB =

(
2 0
0 0

)
6=
(

1 1
1 1

)
= BA

iv) Pay attention that in some cases, it is possible that AB = BA, e.g. K = Q,
m = n = p = 2:

A =
(

1 0
0 0

)
, B =

(
0 0
0 1

)
then AB = BA =

(
0 0
0 0

)
Remark. The last example shows that it is possible that the product of 2 non-zero matrices
is the zero matrix O, a phenomenon that cannot happen for elements in a field, for example
for real numbers.
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Transpose of a matrix

Given a matrix A we can define another matrix by swapping rows and columns of A:
Definition 1.4. Let A ∈ MK(m,n) be a matrix. The transpose of A is the matrix
B ∈MK(n,m) defined by bi,j = aj,i, and it is denoted by AT .

Example. Let A =
(

1 3 2
0 2 −4

)
∈MQ(2, 3) then AT =

1 0
3 2
2 −4

 ∈MQ(3, 2).

Properties. The following properties hold:
i) ∀A ∈MK(m,n): (AT )T = A;
ii) ∀A,B ∈MK(m,n): (A+B)T = AT +BT ;
iii) ∀A ∈MK(m,n), k ∈ K: (kA)T = k(AT );
iv) ∀A ∈MK(m, p), B ∈MK(p, n): (AB)T = BTAT .

Proof. Properties i)-ii)-iii) follow directly from the definitions.
iv) (AB)i,j = ∑p

l=1 ai,lbl,j, so

((AB)T )i,j = (AB)j,i =
p∑
l=1

aj,lbl,i =
p∑
l=1

bl,iaj,l =
p∑
l=1

(BT )i,l(AT )l,j = (BTAT )i,j.

1.2 Linear Systems
Definition 1.5. Let m,n be positive integers. Let A ∈ MK(m,n) be a matrix and let
b ∈ MK(m, 1) be a column vector (of height m). A linear system (or system of linear
equations) is an equation of the form Ax = b, where x ∈MK(n, 1):

a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

... ... . . . ...
am,1 am,2 . . . am,n

 ·

x1
x2
...
xn

 =


b1
b2
...
bm

 (1.1)

The matrix A is called the matrix of coefficients and the column vector b is called the
column of constant terms.

Rewriting equation (1.1), we have a system of m linear equations and n variables:
a1,1x1 + a1,2x2 + . . .+ a1,nxn = b1
a2,1x1 + a2,2x2 + . . .+ a2,nxn = b2

... ... ...
am,1x1 + am,2x2 + . . .+ am,nxn = bm

Notation. A linear system Ax = b is usually represented through its augmented matrix
(A|b):

(A|b) =


a1,1 a1,2 . . . a1,n b1
a2,1 a2,2 . . . a2,n b2

... ... . . . ... ...
am,1 am,2 . . . am,n bn
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Example. The augmented matrix (K = Q)(
1 1 1 0
2 −1 1 1

)
represents the linear system

{
x1 + x2 + x3 = 0

2x1 − x2 + x3 = 1

Definition 1.6. A solution of the linear system Ax = b, is a column vector s ∈MK(n, 1)
whose entries s1, s2, . . . , sn ∈ K satisfy simultaneously all m equations.

We denote by Sol(A|b) the set of all solutions of Ax = b:

Sol(A|b) = {s ∈MK(n, 1) such that As = b} ⊆ MK(n, 1) .

Example. Let m = n = 1, so that the linear system consist of a single equation in one
variable: ax = b, with a, b ∈ K.

If a 6= 0, we can divide both sides by a and get a unique solution: x = b
a
, e.g 3x = 4

has a unique solution: x = 4
3 .

If a = 0 the equation reduces to 0x = b and we have 2 subcases:
i) if b = 0, then we have an equation of the form “0 = 0”, so that any k ∈ K is a solution;
ii) if b 6= 0, then we have an equation of the form “0 = 1”, which has no solutions at all.

Example. Let m = n = 2 (K = R) and consider the linear system{
x+ y = 2
x− y = 0

The second equation is equivalent to x = y, plugging this into the first equation we get
2x = 2, so x = 1, y = 1 is the unique solution of the linear system.

Consider now the linear systems

I)
{
x+ y = 2
x+ y = 1 II)

{
x+ y = 2

3x+ 3y = 6

The linear system I) has no solution since 2 6= 1. The linear system II) reduces to the
single equation x + y = 2 since the second equation is 3-times the first one. So any pair
(s, 2− s), s ∈ K is a solution.

Our goal is to understand if a given linear system has solutions, and, if yes, how to
find all its solutions.

1.2.1 Echelon form
Definition 1.7. A matrix A ∈MK(m,n) is in echelon form if

• every non-zero row starts with more zeroes than the previous one;
• all zero rows are below the non-zero rows.

A linear system Ax = b is in echelon form if its augmented matrix (A|b) is in echelon
form.

Definition 1.8. Let A ∈ MK(m,n) be a matrix in echelon form. The first (from left)
non-zero entry in each non-zero row is called pivot.
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Example. The zero matrix and the identity matrix are in echelon form over any field K.
The matrices (K = R) 2 −1 3 0

0 0 4 1
0 0 0 3

 ,

0 1 −2 3
0 0 4 0
0 0 0 0


are in echelon form. The pivot of the first matrix are 2, 4 and 3; in the second matrix the
pivots are 1 and 4. The following matrices (K = R) are not in echelon form:2 2 3

1 0 0
0 0 0

 ,

0 4 0
0 0 0
0 0 3

 .

Example. Consider the following linear systems (over K = R) in echelon form

i) (A|b) =

 1 −1 3 5
0 1 2 2
0 0 1 7

 ←→


x1 − x2 + 3x3 = 5

x2 + 2x3 = 2
x3 = 7

It is easy to solve it: the last equation returns x3 = 7, we substitute this in the second
equation and get x2 = 2−2·7 = −12; similarly x1 = −28, so Sol(A|b) = {(−28,−12, 7)T}.

ii) (A|b) =

 1 −1 3 5
0 1 2 2
0 0 0 7

 ←→


x1 − x2 + 3x3 = 5

x2 + 2x3 = 2
0 = 7

It has no solutions, since 0 = 7 is impossible.

iii) (A|b) =
(

1 −1 3 5
0 1 2 2

)
←→

{
x1 − x2 + 3x3 = 5

x2 + 2x3 = 2
In the last equation, 2 variables appear, so we express x2 in terms of x3: x2 = 2 − 2x3,
by substitution in the first equation, we get x1 = 5 + x2 − 3x3 = 7− 5x3, so we have one
free variable (x3), and Sol(A|b) = {(7− 5t, 2− 2t, t)T | t ∈ R}.

iv) (A|b) =
(

1 1 −1 1
)

←→ x1 + x2 − x3 = 1
There is only one equation, with 3 variables, so we express one of them, say x3 in

terms of the other two: x3 = x1 + x2 − 1, so we have two free variables, and Sol(A|b) =
{(s, t, s+ t− 1)T | s, t ∈ R}.

v) (A|b) =
(

1 0 −1 1
0 0 1 2

)
←→

{
x1 − x3 = 1

x3 = 2
The second equation returns x3 = 2, we substitute this in the first one and get x1 =

1 + 2 = −3, and there is no constrains on x2, which is then a free variable: Sol(A|b) =
{(3, s, 2)T | s ∈ R}.

Given a linear system in echelon form, we can easily check if it is solvable, and, if yes,
determine all solutions by back-substitution (as above).

So our aim is now to transform an arbitrary linear system into an equivalent one
(i.e. having the same set of solution), which is in echelon form. We will do it, using the
elementary row operations.

11



1.2.2 Elementary row operations and Gauss algorithm
Let A ∈ MK(m,n) be a matrix and let R1, . . . , Rm be its rows. The elementary row
operations are:

1. to swap 2 rows (Ri ↔ Rj):
2. to multiply a row by a non-zero scalar k ∈ K, k 6= 0 (Ri → kRi):
3. to add to a row a multiple of another row: (Ri → Ri + kRj, k ∈ K):

Remark. Considering the corresponding operations on the equations of a linear system,
one easily shows that the elementary row operations do not change the set of solution of
a linear system. In other words, if the matrix (U |b′) is obtained from (A|b) through a
sequence of elementary row operations, then Sol(A|b) = Sol(U |b′).

The Gauss algorithm takes as input a matrix A ∈MK(m,n) and returns as output a
matrix U ∈ MK(m,n) in echelon form, obtained by A via a sequence of elementary row
operations. The rough idea is to “clean up” one column at a time from left to right.

Gauss algorithm. Input: A ∈MK(m,n).
Step 0: If A is in echelon form, then Output: U = A.

Step 1: Let j be the index of the first non-zero column, and let i be a row-index such that
ai,j 6= 0. Then swap the first and the i-th row and obtain the matrix B:

A =



0 . . . 0 ∗ . . . ∗
... ...
0 . . . 0 ai,j
... ...
0 . . . 0 ∗ . . . ∗


R1 ↔ Ri−→ B =



0 . . . 0 p1 . . . ∗
... ...
0 . . . 0 bi,j
... ...
0 . . . 0 ∗ . . . ∗


Note that p1 = ai,j 6= 0.

Step 2: For each row l 6= 1 such that bl,j 6= 0, we apply the move: Rl → Rl +
(
−bl,j
p1

)
R1,

so that bl,j becomes bl,j +
(
−bl,j
p1

)
p1 = 0:

B =



0 . . . 0 p1 . . . ∗
... ...
0 . . . 0 bl,j
... ...
0 . . . 0 ∗ . . . ∗


Rl → Rl +

(
−bl,j
p1

)
R1

−→ C =


0 . . . 0 p1 ∗ . . . ∗
... ... 0
... ... ... A′

0 . . . 0 0



Step 3: “Restart” the algorithm with A′ ∈MK(m− 1, n′) (n′ < n).
Remark. There are several ways to reduce a matrix A in echelon form, so the output is
not unique!
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Example. Let us consider the matrix M =

0 −3 −5 1
2 −4 2 6
1 −1 3 5

 ∈ MR(3, 4), we use now

the elementary row operation to reduce it in echelon form:0 −3 −5 1
2 −4 2 6
1 −1 3 5

 R1 ↔ R3−→

1 −1 3 5
2 −4 2 6
0 −3 −5 1

 R2 ↔ R2 − 2R1−→

1 −1 3 5
0 −2 −4 −4
0 −3 −5 1


R2 ↔ −1

2R2−→

1 −1 3 5
0 1 2 2
0 −3 −5 1

 R3 ↔ R3 + 3R2−→

1 −1 3 5
0 1 2 2
0 0 1 7


Interpreting M as the augmented matrix of a linear system, we read:

3x2 − 5x3 = 1
2x1 − 4x2 + 2x3 = 6
x1 − x2 + 3x3 = 5

is equivalent/reduces to


x1 − x2 + 3x3 = 5

x2 + 2x3 = 2
x3 = 7

The Gauss-Jordan algorithm is a refinement of the Gauss algorithm: once we have
reduced our matrix in echelon form, we perform further elementary row operations to
“clean out” one column at a time form right to left. The final output will be a matrix in
echelon form such that every pivot is equal to 1 and every pivot is the unique non-zero
element in its column.

We explain it with 2 examples (K = R).

Example. i) We continue the previous example :

1 −1 3 5
0 1 2 2
0 0 1 7


R2 → R2 − 2R3
R1 → R1 − 3R3−→

1 −1 0 −16
0 1 0 −12
0 0 1 7

 R1 → R1 +R3−→

1 0 0 −28
0 1 0 −12
0 0 1 7



ii) Consider the linear system
{

2x1 − 6x2 + 2x3 + 2x4 = 6
−3x1 + 9x2 + + 3x4 = −9 , its augmented

matrix reduces to:

(
2 −6 2 2 6
−3 9 0 3 −9

) R1 → 1
2R1

R2 → 1
3R2−→

(
1 −3 1 1 3
−1 3 0 1 −3

)
R2 → R2 +R1−→

(
1 −3 1 1 3
0 0 1 2 0

)

R1 → R1 −R2−→
(

1 −3 0 −1 3
0 0 1 2 0

)
which corresponds to

{
x1 − 3x2 − x4 = 3

x3 + 2x4 = 0

Definition 1.9. The variables corresponding to pivots are called pivot variables; the
remaining ones are called free variables.

In the linear system
{
x1 − 3x2 − x4 = 3

x3 + 2x4 = 0 , the variables x2, x4 are free variables,

while x1, x3 are pivot variables and can be expressed in term of the free variables: x1 = 3+
3x2+x4 (1st equation), x3 = −2x4 (2nd equation): Sol = {(3+3s+t, s,−2t, t)T | s, t ∈ K}.
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Remark. The Gauss(-Jordan) algorithm solves a linear system expressing the pivot vari-
ables in term of the free variables.

Definition 1.10. Let A ∈MK(m,n) be a matrix, and let U ∈MK(m,n) be a reduction
of A in echelon form. The rank of A (denoted rk(A)) is the number of pivots of U .

Example. rk(O) = 0, rk(In) = n.

The matrix A =

1 2 3
2 4 6
3 6 9

 reduces to A′ =

1 2 3
0 0 0
0 0 0

, so rk(A) = 1.

The matrix B =

1 2 3
4 5 6
7 8 9

 reduces to B′ =

1 2 3
0 1 2
0 0 0

, so rk(B) = 2.

Remark. i) As remarked above, there are several ways to reduce a matrix A in echelon
form. We will show later in the course that all reductions of A in echelon form have the
same number of pivots. In other words, the rank is independent from the reduction.
ii) Elementary row operations preserve the rank.
iii) Since the pivots are in different columns and rows, for A ∈ MK(m,n), it holds
0 ≤ rk(A) ≤ m and 0 ≤ rk(A) ≤ n, i.e. 0 ≤ rk(A) ≤ min{m,n}.

1.2.3 Rouché-Capelli Theorem
Example. Consider the linear system 1 0 2 3 4

0 1 2 −1 5
0 −1 −2 1 α

 where α ∈ K is a parameter.

Applying the move R3 → R3 +R2, we get the matrix 1 0 2 3 4
0 1 2 −1 5
0 0 0 0 5 + α


If 5 + α 6= 0, the last equation has the form “0 = 1” so there is no solution.
If 5 + α = 0, the last equation has the form “0 = 0” and we do have solutions:

x1 = 4− 2x3 − 3x4, x2 = 5− 2x3 + x4:

Sol =




4− 2s− 3t
5− 2s+ t

s
t

 | s, t ∈ K

 =




4
5
0
0

+


−2
−2
1
0

 s+


−3
1
0
1

 t | s, t ∈ K


Theorem 1.11 (Rouché-Capelli Theorem). Let Ax = b be a linear system with A ∈
MK(m,n) and b ∈MK(m, 1).

1. The linear system Ax = b is solvable if and only if rk(A) = rk(A|b).
2. If rk(A) = rk(A|b) = r, then there exist n− r + 1 column vectors v, w1, . . . , wn−r ∈
MK(n, 1), such that Sol(A|b) = {v + t1w1 + · · ·+ tn−rwn−r : ti ∈ K}.
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3. In particular, Ax = b has a unique solution if and only if rk(A) = rk(A|b) = n

Proof. Applying the Gauss algorithm to (A|b) we obtain a matrix (U |b′) in echelon form
such that Sol(A|b) = Sol(U |b′). There are 2 possibilities for (U |b′): either all pivots are
on the left (1), or there is a pivot on the right (2):

(1)



0 . . . 0 p1
0 . . . 0 0 p2

0 . . . 0 0 0 . . .
0 . . . 0 0 0 . . . pr . . .
0 . . . 0 0 0 . . . 0 0 0

 (2)



0 . . . 0 p1
0 . . . 0 0 p2

0 . . . 0 0 0 . . .
0 . . . 0 0 0 . . . pr . . .
0 . . . 0 0 0 . . . 0 0 pr+1
0 . . . 0 0 0 . . . 0 0 0


where the pj’s are the pivots, in particular pj 6= 0.

In situation (2), the (r + 1)-th row reads “0 = 1” so the linear system is not solvable,
and rk(A|b) = rk(A) + 1: rk(A) < rk(A|b).

In situation (1), rk(A) = rk(A|b) and no row is of the form “0 = 1”, so the linear system
is solvable by back-substitution: there are r = rk(A) = rk(A|b) non-zero equations, which
allow us to express the pivot variables (r variables) in term of the free variables n − r
variables, so the solutions depend on n− r parameters.

Example. Consider the linear system Ax = b −2 2 −1 3 −3
3 −3 6 0 0
1 −1 5 3 −3


After reducing it with the Gauss-Jordan algorithm, we obtain the equivalent linear system 1 −1 0 −2 2

0 0 1 1 −1
0 0 0 0 0


So rk(A) = rk(A|b) = 2 and n = 4: there are 2 pivot variables x1, x3 and 2 free

variables: x2 and x4:

Sol(A|b) =




2 + s+ 2t
s

−1− t
t

 | s, t ∈ K

 =




2
0
−1
0

+


1
1
0
0

 s+


2
0
−1
1

 t | s, t ∈ K


Remark. a) The parametric part of the solution (

( 1
1
0
0

)
s +

( 2
0
−1
1

)
t in the last example)

does not depend on the constant terms, but only on the matrix of coefficients and more
precisely 


1
1
0
0

 s+


2
0
−1
1

 t | s, t ∈ K

 = Sol(A|0)
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b) The constant terms contribute to the constant/fixed part of the solution (
( 2

0
−1
0

)
in

the last example).
Definition 1.12. A linear system of the form Ax = 0 (i.e. the constant terms is made
of zeroes) is called a homogeneous linear system.
Remark. A homogeneous linear system has always a solution, namely x = (0, . . . , 0)T ,
called the trivial solution.
Theorem 1.13 (Structure theorem of the solutions of a linear system). Let Ax = b be a
solvable linear system and let v0 ∈ Sol(A|b). Then

Sol(A|b) = v0 + Sol(A|0) .

In other words: for every vH ∈ Sol(A|0) the column vector v0 + vH is a solution of
Sol(A|b); conversely every solution of Ax = b is of the form v0 + vH , where vH ∈ Sol(A|0).

Proof. Let vH ∈ Sol(A|0), then A(v0+vH) = Av0+AvH = b+0 = b, so v0+vH ∈ Sol(A|b).
Conversely, let v be a solution of Ax = b, then we define vH = v − v0 and we verify

that vH ∈ Sol(A|0): A(v − v0) = Av − Av0 = b− b = 0.

We conclude this section with two consequences of the Rouché-Capelli theorem.
Lemma 1.14. Let A ∈ MK(m,n) be a matrix with m < n. Then for any b ∈ MK(m, 1)
the linear system Ax = b cannot have a unique solution.
Proof. By Rouché-Capelli theorem Ax = b has a unique solution if and only if n =
rk(A|b) = rk(A), but rk(A) ≤ min{m,n} = m < n.
Theorem 1.15 (Cramer’s theorem). Let A ∈ MK(n, n) be a square matrix. Then
rk(A) = n if and only if the linear system Ax = b has a unique solution for any
b ∈MK(n, 1).
Proof. ⇒] Assume rk(A) = n and consider a linear system Ax = b for an arbitrary
b ∈MK(n, 1). We want to show that Ax = b has a unique solution.

We consider the augmented matrix (A|b) and we reduce it into echelon form using
the Gauss algorithm, obtaining the matrix (U |b′). Since rk(A) = rk(U) = n, and U is a
square matrix of type n× n, the pivots of U appear on the diagonal:

(A|b) Gauss−→ (U |b′) =



p1 ∗ ∗ ∗ ∗ ∗
0 p2

0 0 . . .
... . . .
0 0 . . . pn ∗


So rk(A|b) = rk(U |b′) = n and by the Rouché-Capelli theorem Ax = b has a unique

solution.
⇐] Assume that the linear system Ax = b has a unique solution for a b ∈ MK(n, 1).

Then by the Rouché-Capelli theorem rk(A) = n.

Remark. Note that to check whether a square matrix A ∈ MK(n, n) has rk(A) = n, it is
enough to find a b ∈ MK(n, 1) such that Ax = b has a unique solution, e.g. we check if
Ax = 0 has a unique solution.
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1.2.4 Inverse Matrix
For each k ∈ K, k 6= 0, there exists k′ ∈ K such that k · k′ = 1, k′ is the inverse element.

Can we do the same for matrices?

Definition 1.16.
• A matrix A ∈ MK(m,n) is right invertible if there exists a B ∈ MK(n,m) such

that AB = Im.
• A matrix A ∈MK(m,n) is left invertible if there exists a C ∈MK(n,m) such that
CA = In.

• A matrix A ∈MK(m,n) is invertible if it is right and left invertible.

Proposition 1.17. Let A ∈MK(m,n) be an invertible matrix, then
1. The right and the left inverse of A (if they exist) are equal.
2. The inverse matrix of A is unique (if it exists).

Proof. 1. Assume there exist B,C ∈MK(n,m) such that AB = Im, CA = In so

B = ImB = (CA)B = C(AB) = CIn = C

2. As 1., with B,C inverse matrices of A.

Remark. If A ∈MK(m,n) is not a square matrix (m 6= n), then A is not invertible!
We will prove this fact later in the course, so we stick to square matrices!

Example. Let A =
(

1 2
3 4

)
∈ MR(2, 2). We want to determine if it is invertible, so we

look for a matrix X ∈MR(2, 2) such that AX = I2, and then we verify XA = I2:

(
1 0
0 1

)
=
(

1 2
3 4

)(
x1,1 x1,2
x2,1 x2,2

)
=
(
x1,1 + 2x2,1 x1,2 + 2x2,2
3x1,1 + 4x2,1 3x1,2 + 4x2,2

)
←→


x1,1 + 2x2,1 = 1

3x1,1 + 4x2,1 = 0
x1,2 + 2x2,2 = 0

3x1,2 + 4x2,2 = 1

The linear system is equivalent to two linear systems (one in the variables x1,1, x2,1
and one in the variables x1,2, x2,2), both having A as matrix of coefficient:(

1 2
3 4

)(
x1,1
x2,1

)
=
(

1
0

) (
1 2
3 4

)(
x1,2
x2,2

)
=
(

0
1

)

We use the Gauss-Jordan algorithm to solve them simultaneously!

(A|I2) =
(

1 2 1 0
3 4 0 1

)
R3 → R3 − 3R1−→

(
1 2 1 0
0 −2 −3 1

) R1 → R1 +R2
R2 → −1

2R2−→
(

1 0 −2 1
0 1 3/2 −1/2

)

So B =
(
−2 1
3/2 −1/2

)
satisfies AB = I2, and it is straightforward to check that

BA = I2 holds true as well: A is invertible and A−1 = B.

17



Theorem 1.18.
Let A ∈MK(n, n) be a square matrix. Then the following are equivalent:

1. A is invertible;
2. rk(A) = n;
3. Ax = b has a unique solution for any b ∈MK(n, 1).

Proof. By Cramer’s theorem we know that 2. and 3. are equivalent, so we prove the
theorem by showing the following two implications: 1⇒ 3 and 2⇒ 1.

1.⇒ 3.] Assume A is invertible, and consider the linear system Ax = b, for an arbitrary
b ∈ MK(n, 1). Then x = A−1b is a solution: A(A−1b) = (AA−1)b = Inb = b; and every
solution has this form: Ax = b ⇒ A−1Ax = A−1b ⇒ x = A−1b. So x = A−1b is the
unique solution.

2. ⇒ 1.] The rank of A is n, so by Cramer’s theorem we can solve any linear system
Ax = b with b ∈MK(n, 1), and the solution is unique. Consider the n linear systems:

A


x1,1
x2,1

...
xn,1

 =


1
0
...
0

 , A


x1,2
x2,2

...
xn,2

 =



0
1
0
...
0

 , . . . , A

x1,n
x2,n

...
xn,n

 =


0
...
0
1



and let b1, b2, . . . , bn ∈ MK(n, 1) be their solutions. Define B ∈ MK(n, n) as the matrix,
whose columns are b1, b2, . . . , bn. Then by construction B is a right-inverse of A: AB = In;
and we need to show BA = In.

Let us now consider the linear system Bx = 0. Applying A on both sides we obtain
A(Bx) = A(0) = 0 ⇒ Inx = 0 ⇒ x = 0. So Bx = 0 has a unique solution and by
Rouché-Capelli rk(B) = n.

Arguing as for A, we can find a matrix C such that BC = In: a right-inverse of B,
but A is a left-inverse of B, thus BA = In = CB. In other words B is invertible, and
A = C, so A is invertible as well.

In practice, given a square matrix A ∈MK(n, n), to determine whether it is invertible
and find its inverse, we need to solve n linear systems in n variables, all having A as
matrix of coefficient, so it is more convenient to solve them simultaneously by using the
Gauss-Jordan algorithm (as in the examples). There are 2 cases, visually:

i) (A|In) Gauss-Jordan−→ (In|B) then A invertible and A−1 = B

ii) (A|In) Gauss-Jordan−→ (A′|∗) where A′ has a zero row, then A not invertible

Example. Let us determine the inverse of the following matrices:

i) A =

1 0 1
2 1 6
3 0 2

 ∈MR(3, 3), ii) M =
(

1 1
2 2

)
∈MR(2, 2)
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i)

 1 0 1 1 0 0
2 1 6 0 1 0
3 0 2 0 0 1


R2 → R2 − 2R1
R3 → R3 − 3R1−→

 1 0 1 1 0 0
0 1 4 −2 1 0
0 0 −1 −3 0 1


R1 → R1 +R3
R2 → R3 + 4R3
R3 → −R3−→

 1 0 0 −2 0 1
0 1 0 −14 1 4
0 0 1 3 0 −1



So C =

 −2 0 1
−14 1 4

3 0 −1

 satisfies AB = I3 = BA = I3: A is invertible and A−1 = B.

ii)
(

1 1 1 0
2 2 0 1

)
R2 → R2 − 2R1−→

(
1 1 1 0
0 0 −2 1

)
and we cannot go on, since the linear systems have no solutions. This means that M is
not invertible, indeed it has rk(B) = 1 < 2.

We conclude seeing how the inverse behaves with respect to the operations of product
and transpose.

Proposition 1.19. Let A,B ∈MK(n, n) be invertible matrices, then
i) AB is invertible and (AB)−1 = B−1A−1.

ii) AT is invertible and (AT )−1 = (A−1)T .

Proof. i) (AB)(B−1A−1) = A(BB−1)A−1 = AInA
−1 = AA−1 = In.

Similarly, (B−1A−1)(AB) = In.
ii) AT (A−1)T = (A−1A)T = ITn = In. Similarly, (A−1)TAT = (AA−1)T = ITn = In.

1.3 Determinant
Definition 1.20. The determinant is a function det :MK(n, n)→ K defined recursively:

(n = 1) det(a1,1) = a1,1;

(n ≥ 2) Laplace expansion: det(A) =
n∑
j=1

(−1)i+jai,j det(Âi,j), where i is a fixed row index

and Âi,j ∈ MK(n − 1, n − 1) is the matrix obtained from A by removing the i-th
row and the j-th column.

Example. K = R, i = 1:

det

1 2 3
4 5 6
7 8 9

 = (−1)1+11 det
(

5 6
8 9

)
+ (−1)1+22 det

(
4 6
7 9

)
+ (−1)1+33 det

(
4 5
7 8

)

Remark. i) Alternatively we can take the Laplace expansion along a fixed column (the

j-th): det(A) =
n∑
i=1

(−1)i+jai,j det(Âi,j), where as above Âi,j ∈ MK(n − 1, n − 1) is the

matrix obtained from A by removing the i-th row and the j-th column.
ii) The determinant of a matrix A ∈MK(n, n) does not depend on the expansions.
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Example. Let us compute the determinant of an arbitrary matrix of type 2 × 2, by
expanding along the first column:

det
(
a b
c d

)
= (−1)1+1a det(d) + (−1)1+2c det(b) = ad− bc.

Example. Let us compute the determinant of the matrix A =
( 4 0 3

1 2 0
7 3 0

)
∈ MR(3, 3). We

expand it along the second column:

det

4 0 3
1 2 0
7 3 0

 = (−1)2+10 det Â2,1 + (−1)2+22 det Â2,2 + (−1)2+33 det Â2,3

= 2 det
(

4 3
7 0

)
− 3 det

(
4 3
1 0

)
= 2(4 · 0− 7 · 3)− 3(4 · 0− 1 · 3) = −42 + 9 = −33

Remark. Note that each time we have ai,j = 0 we do not need to compute the corre-
sponding hat matrix Âi,j, so we should select the row/column with the highest number
of zeroes.

Example. We expand the matrix A along the third column:

det

4 0 3
1 2 0
7 3 0

 = (−1)3+13 det Â3,1+(−1)3+20 det Â3,2+(−1)3+30 det Â3,3 = 3 det
(

1 2
7 3

)
= −33

Let see now some special cases:

Definition 1.21. Let A ∈MK(n, n) be a square matrix.
A is an upper triangular matrix if aij = 0 for all j < i.
A is a lower triangular matrix if aij = 0 for all j > i.
A is a diagonal matrices: if aij = 0 for all j 6= i.

Example.
( 0 1 2

0 1 3
0 0 1

)
is upper triangular,

( 1 0 0
2 0 0
4 0 −1

)
is lower triangular and

( 1 0 0
0 0 0
0 0 −1

)
is diag-

onal. The identity matrix In is a diagonal matrix, and every matrix in echelon form is
upper triangular.

Lemma 1.22. Let A ∈MK(n, n) be a triangular matrix.
Then detA = a1,1 · a2,2 · · · an,n; in particular det(In) = 1.

Proof. Repeatedly expanding along the 1st column/row we have detA = a1,1 det Â1,1 =
a1,1 · a2,2 · · · an,n.

Theorem 1.23. Let A,B ∈MK(n, n) then
• det(AB) = det(A) · det(B) (Binet’s formula).
• det(A) = det(AT ).

Corollary 1.24. Let A ∈MK(n, n) be an invertible matrix, then det(A−1) = 1
detA .

Proof. 1 = det(In) = det(AA−1) = det(A) · det(A−1), so det(A−1) = 1
detA .
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1.3.1 Determinant and elementary row operations
Properties. Let A ∈ MK(m,n). The elementary row operations affect the determinant
as follows:

• Swapping to rows (i 6= j): A
Ri ↔ Rj
−→ B : detB = − detA.

• Multiplying a row by a scalar k ∈ K: A
Ri → kRi−→ B : detB = k detA.

• Adding to a row a multiple of another row: A
Ri → Ri + kRj−→ B : detB = detA.

Remark. i) By the first property, if A has 2 equal rows, then detA = 0.
ii) By the second property we have: det(kA) = kn det(A) for any A ∈MK(m,n).
iii) det(A) = det(AT ), so the previous properties hold if we replace rows by columns.

Example. Let A,B ∈MQ(3, 3), with detA = −2, detB = −3, then

det
(1

2B
−6A2B5

)
=
(1

2

)3 (detA)2

detB = −1
6 .

Example. Let us compute the determinant of the matrix A =
( 0 0 −3 5

1 8 6 7
2 0 4 7
3 0 6 9

)
∈ MR(4, 4).

We start expanding along the second column:

detA = 8 det

0 −3 5
2 4 7
3 6 9

 R3 → 1
3R3= 24 det

0 −3 5
2 4 7
1 2 3

 R2 → R2 − 2R3= 24 det

0 −3 5
0 0 1
1 2 3


= −24 det

(
0 −3
1 2

)
= −72

We conclude this chapter by giving a characterisation of invertible matrices in terms
of determinant.

Theorem 1.25 (Characterisation of invertible matrices).
Let A ∈MK(n, n) be a square matrix. Then the following are equivalent:

1. A is invertible;
2. rk(A) = n;
3. Ax = b has a unique solution for any b ∈MK(n, 1);
4. det(A) 6= 0.

Proof. By Theorem 1.18, we know 1.⇔ 2.⇔ 3., so we are left to show 1.⇔ 4..
1.⇒ 4.] As in the proof of Corollary 1.24, if A is invertible, then det(A) ·det(A−1) = 1,

thus det(A) 6= 0.
4. ⇒ 1.] Applying the Gauss algorithm to A we get a matrix U in echelon form with

det(U) = c det(A) for some c ∈ K, c 6= 0, so detU 6= 0. Being in echelon form U is also
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upper triangular: 0 6= det(U) = u1,1 · · ·un,n, so the pivots appear on the diagonal:

U =



u1,1 ∗ ∗ · · · ∗
0 u2,2 ∗ · · · ∗
0 0 . . .
... ... . . .
0 0 . . . un,n


We get n = rk(U) = rk(A), so A is invertible.
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Chapter 2

Vector spaces

In the first chapter we discussed the algebraic aspect of the objects we introduced: ma-
trices, linear system, solutions and determinant.

In this chapter, we start to look at them from a geometric point of view which general-
ize what we saw in the Introduction and will explain certain choices made in the previous
chapter.

2.1 Vector spaces
Definition 2.1. A vector space over a field K is a set V with two operations: a sum
+ : V × V → V and a product by scalar · : K× V → V satisfying:
VS1) ∀u, v, w ∈ V : (u+ v) + w = u+ (v + w) (associativity of +)
VS2) ∀v, w ∈ V : v + w = w + v (commutativity of +)
VS3) ∃0 ∈ V : v+0 = 0+v = v ∀v ∈ V (neutral element of +: zero-vector or null-vector)
VS4) ∀v ∈ V, ∃v′ ∈ V : v + v′ = v′ + v = 0 (additive inverse)
VS5) ∀c, d ∈ K, v ∈ V : (c · d) · v = c · (d · v) (associativity of ·)
VS6) ∀v ∈ V : 1 · v = v (neutral element of ·)
VS7) ∀c, d ∈ K, v ∈ V : (c+ d) · v = c · v + d · v (distributivity)
VS8) ∀c ∈ K, v, w ∈ V : c · (v + w) = c · v + c · w (distributivity)

The elements of a vector space are called vectors.

Notation. Sometimes we call V a K-vector space.

Example.
• MK(m,n) is a vector space over K (with the operations defined in Chapter 1).
• free vectors in R2 and R3 form a vector space over R (with the operations seen in

the Introduction).
• the set of continuous real functions C0(R) is a vector space over R.
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• the set K[t] = {∑n
k=1 akt

k} of polynomial with K-coefficients is a vector space over
the field K with respect to the usual operations:(∑

k

ant
k

)
+
(

n∑
k

bkt
k

)
=

n∑
k

(ak + bk)tk , λ

(∑
k

ant
k

)
=
∑
k

(λan)tk

• the solution set of a homogeneous linear system Sol(A|0), A ∈MK(m,n) is a vector
space over K with respect to the sum and product by a scalar for matrices: let
v1, v2 ∈ Sol(A|0), then

A(v1 + v2) = Av1 + Av2 = 0 + 0 = 0 A(λv1) = λAv1 = λ0 = 0

Notation. There are two zeroes around: the scalar zero and the zero vector. If it is
not clear from the context, we will resolve this ambiguity by denoting by 0K the scalar
zero and by 0V the null vector of V .

Remark. i) In VS4), the additive inverse of v ∈ V is v′ = (−1) · v = −v.
ii) 0K · v = 0V and it holds the zero-product property: λ · v = 0V ⇒ λ = 0K or v = 0V .
iii) The zero vector and the the additive inverse of v ∈ V are unique.

2.2 Vector subspaces
Definition 2.2. Let (V,+, ·) be a vector space over K. A subset W ⊂ V is a vector
subspace (and one usually write W / V ) if the following conditions hold:
S1) 0V ∈ W ;
S2) ∀w1, w2 ∈ W it holds w1 + w2 ∈ W ;
S3) ∀w ∈ W and λ ∈ K it holds λ · w ∈ W .

Remark. This three conditions ensure that W is a vector space over K with the operations
inherited from V .

Example.
• W = {0V } / V ; V / V .
• the set of differentiable real functions C1(R) is a vector subspace of C0(R).
• the set K[t]≤d = {p(t) ∈ K[t] | deg(p) ≤ d} of polynomial of degree ≤ d is a vector

subspace of K[t], actually:

K[t]≤d /K[t]≤d+n /K[t] , for k ∈ N.

• the solution set of a homogeneous linear system Sol(A|0), A ∈MK(m,n) is a vector
subspace of MK(n, 1), e.g. W = {(x, y, z)T ∈ R3 | x+ 2y − z = 0} / R3.

• the solution set of a non-homogeneous linear system Sol(A|b), b 6= 0 is not a vector
subspace of V = MK(n, 1), since b 6= A · 0V = 0, e.g. W = {(x, y, z)T ∈ R3 |
x+ 2y − z = 1} 6 R3.

• {(x, y, z)T ∈ R2 | x ≥ 0, y ≥ 0} and {(x, y, z)T ∈ R2 | xy ≥ 0} are not vector
subspaces of R2.
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2.2.1 Intersection and sum of vector subspaces
Lemma 2.3. Let V be a K-vector space, and let U,W /V be vector subspaces, then U ∩W
is a vector subspace too.
Proof. S1) 0V ∈ U and 0V ∈ W , so 0V ∈ U ∩W .
S2) Let v1, v2 ∈ U ∩W , then v1 + v2 ∈ U (since U / V ) and v1 + v2 ∈ W (since W / V ),
so v1 + v2 ∈ U ∩W .
S3) Let v ∈ U ∩W and λ ∈ K, then λv ∈ U (since U / V ) and λv ∈ W (since W / V ), so
λv ∈ U ∩W .
Example. Let W = {(x, y, z)T ∈ R3 | x+ 2y− z = 0} /R3 and let U = {(x, y, z)T ∈ R3 |
−y + 3z = 0} / R3, then

U ∩W =
{

(x, y, z)T ∈ R3 |
{
x+ 2y − z = 0
−y + 3z = 0

}
=


−5
−3
1

 t | t ∈ R

 .
What about the union?

Remark. In general the union of two subspaces is not a subspace, for example let U =
{(x, y)T ∈ R2 | x+ y = 0} / R2 and W = {(x, y)T ∈ R2 | x− y = 0} / R2, then (1, 1) and
(1,−1) belong to U ∪W , but (1, 1) + (1,−1) = (2, 0) /∈ U ∪W .
Definition 2.4. Let V be a K-vector space, and let U,W / V be vector subspaces. We
define their sum U +W as

U +W = {v ∈ V |∃u ∈ U,w ∈ W such that v = u+ w} .

“U + W contains all vectors that can be decomposed as sum of a vector in U and a
vector in W”.
Lemma 2.5. Let V be a K-vector space, and let U,W / V be vector subspaces, then

1. U +W is a vector subspace too.
2. U / U +W and W / U +W

3. U ∩W / U , U ∩W /W .
Proof. 1. S1) 0V = 0V︸︷︷︸

∈U

+ 0V︸︷︷︸
∈W

∈ U +W .

S2) Let v1 = u1 + w1, v2 = u2 + w2 ∈ U +W , with u1, u2 ∈ U , w1, w2 ∈ W .
Then v1 + v2 = (u1 + u2)︸ ︷︷ ︸

∈U

+ (w1 + w2)︸ ︷︷ ︸
∈W

∈ U +W .

S3) Let λ ∈ K and v = u+ w ∈ U ∩W with u ∈ U , w ∈ W .
Then λv = (λu)︸ ︷︷ ︸

∈U

+ (λw)︸ ︷︷ ︸
∈W

∈ U +W .

2. and 3. are obvious.
Example. a) Let U = {(x, y)T ∈ R2 | x + y = 0} / R2 and W = {(x, y)T ∈ R2 |
x − y = 0} / R2, then U + W = R2, indeed every (a, b) ∈ R2 can be written as (a, b) =(
a−b

2 , b−a2

)
+
(
a+b

2 , a+b
2

)
∈ U +W

b) Let U =
{( 1

1
0

)
t | t ∈ R

}
/ R3 and W =

{( 0
2
−1

)
s | s ∈ R

}
/ R3, then

U +W =
{( 1

1
0

)
t+

( 0
2
−1

)
s | t, s ∈ R

}
/ R3.
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Definition 2.6. Let V be a K-vector space, and let U,W / V be vector subspaces. The
sum U +W is called direct (denoted U ⊕W ) if U ∩W = {0V }.

The meaning of this definition is: “The sum U + W is direct if all vectors can be
decomposed in a unique way as sum of a vector in U and a vector in W”.

Example. In the last 2 examples the sum is direct, in particular in a) U ⊕W = R2.

2.3 Describing elements in a vector space
Definition 2.7. Let V be a vector space over the field K, and let {v1, . . . , vn} ⊂ V be a
finite subset of vectors.

A linear combination of {v1, . . . , vn} is an element of V of the form

λ1v1 + λ2v2 + . . .+ λnvn with λ1, λ2, . . . , λn ∈ K.

The set of all linear combinations of {v1, . . . , vn} is called the span of {v1, . . . , vn}:

Span(v1, . . . , vn) = {λ1v1 + λ2v2 + . . .+ λnvn | λ1, λ2, . . . , λn ∈ K}.

Proposition 2.8. Let V be a K-vector space, and let {v1, . . . , vn} ⊂ V be a finite subset
of vectors. Then Span(v1, . . . , vn) is a vector subspace of V .

Proof. S1) Pick λ1 = λ2 = . . . = λn = 0K: 0v1 + 0v2 + . . .+ 0vn = 0V ∈ Span(v1, . . . , vn).
S2) Let u = ∑n

i=1 λivi and w = ∑n
i=1 µivi, then u+w = ∑n

i=1(λi+µi)vi ∈ Span(v1, . . . , vn).
S3) Let u = ∑n

i=1 λivi and let γ ∈ K, then γu = ∑n
i=1(γλi)vi ∈ Span(v1, . . . , vn).

Example. 1. K[t]≤d = {p(t) ∈ K[t] | deg(p) ≤ d} = Span(1, t, . . . , td).

2. In K3(=MK(3, 1)) let S =
{( 1

1
0

)
,
( 1

0
1

)}
, then

Span(S) =
{
λ1
( 1

1
0

)
+ λ2

( 1
0
1

)
| λ1, λ2 ∈ K

}
=
{(

λ1+λ2
λ1
λ2

)
| λ1, λ2 ∈ K

}
.

3. Similarly, let S =
{( 1

0
0

)
,
( 0

1
0

)
,
( 1

2
−1

)
,
( 0

0
1

)}
, then

Span(S) =
{(

λ1+λ3
λ2+2λ2
−λ3+λ4

)
| λ1, λ2, λ3, λ4 ∈ K

}
.

Remark. Note that a linear system Ax = b is solvable if and only if b is a linear combination
of the columns of A! In other words, Ax = b is solvable if and only if b ∈ Span(c1, . . . , cn),
where ci ∈MK(m, 1) are the columns of A ∈MK(m,n).

For example (n = 3):
( 1

1
2

)
∈ Span

(( 2
0
2

)
,
( 1
−1
0

))
, indeed, the linear system

( 2 1
0 −1
2 0

)(
λ1
λ2

)
=( 1

1
2

)
is solvable (λ1 = 1, λ2 = −1).

26



2.3.1 Generators
Now we want to compare V with Span(v1, . . . , vn).

Definition 2.9. Let V be a vector space over the field K. A finite subset {v1, . . . , vn} ⊂ V
is a set of generators of V if Span(v1, . . . , vn) = V (i.e. if every element in V is a linear
combination of {v1, . . . , vn}).

Notation. Other common terminology are: v1, . . . , vn are generators of V ; v1, . . . , vn
generate V .
Remark. i) To be generators means that {v1, . . . , vn} are enough to describe V !

ii) If {v1, . . . , vn} ⊆ {v1, . . . , vn, vn+1, . . . , vs} and Span(v1, . . . , vn) = V , then
Span(v1, . . . , vn, . . . , vs) = V .

Example. We continue the previous examples.
1. {1, t, . . . , td} is a set of generators of K[t]≤d.

2.
{( 1

1
0

)
,
( 1

0
1

)}
is not a set of generators of K3, e.g. the linear system1 1

1 0
0 1

(λ1
λ2

)
=

0
1
0


is not solvable.

3.
{( 1

0
0

)
,
( 0

1
0

)
,
( 1

2
−1

)
,
( 0

0
1

)}
is a set of generators of K3, indeed the linear system 1 0 1 0 b1

0 1 2 0 b2
0 0 −1 1 b3


is solvable for any (b1, b2, b3)T ∈ K3.

Remark. How many elements must have a set of generators of Km?
We need that the “corresponding” matrix (with m rows) has m pivots on the left (so that
the linear system is solvable), thus we need at least m columns: in other words, a set of
generators of Km has at least m elements!

Finite generation

Definition 2.10. A vector space V is finitely generated if there exist a finite subset
{v1, . . . , vn} ⊂ V such that V = Span(v1, . . . , vn).

Example. • K[t]≤d = Span(1, t, . . . , td) is finitely generated.
• Kn, MK(m,n) are finitely generated:

Kn = Span





1
0
0
...
0

 ,


0
1
0
...
0

 , . . . ,


0
0
...
0
1
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MK(m,n) = Span




1 0 · · · 0
0 0 · · · 0
... ... . . . ...
0 0 · · · 0

 ,


0 1 0 · · · 0
0 0 0 · · · 0
... ... ... . . . ...
0 0 0 · · · 0

 , . . . ,


0 · · · 0 0
... . . . ... ...
0 · · · 0 0
0 · · · 0 1




• If V is finitely generated, any vector subspace W / V is finitely generated too.

Example. • K[t] is not finitely generated: the linear combinations we may obtain
from a finite set of polynomial cannot have arbitrary high degree.

• C0(R) is not finitely generated.

Good news! In this course we consider only finitely generated vector spaces. From
now on, every vector space we consider will be implicitly assumed to be finitely generated.

2.3.2 Linear independence
Example. i) T = {1, t, t2, t3} is a set of generators of K[t]≤3, and p(t) = (1 + t)3 can be
written in a unique way as linear combination of the vectors in T : (1+t3) = 1+3t+3t2+t3.

ii) S =
{( 1

0
0

)
,
( 0

1
0

)
,
( 1

2
−1

)
,
( 0

0
1

)}
is a set of generators of K3, and every v ∈ K3 (e.g.

( 2
−3
5

)
)

can be written in several ways as linear combination of the vectors in S, indeed by the
Rouché-Capelli theorem, the solution set of the linear system 1 0 1 0 2

0 1 2 0 −3
0 0 −1 1 5


depends on one parameter: Sol =

{( 2
−3
0
5

)
+
(
−t
−2t
t
t

)
| t ∈ K

}
. We would like to remove

this ambiguity, and have a unique representation!

Remark. In Km, if we consider more than m vectors, we cannot have a unique represen-
tation (if it exists): indeed, the “corresponding” matrix (with m rows) would have more
columns than rows (see Lemma 1.14).

In other words, in the previous example the ambiguity arises because we have to many
variables/columns, so the idea is to remove vectors.

Example. We continue the previous example and we consider the representation of
( 0

0
0

)
,

so we solve the corresponding homogeneous linear system 1 0 1 0 0
0 1 2 0 0
0 0 −1 1 0


By Theorem 1.13 the solutions of the homogeneous linear system are

{(
−t
−2t
t
t

)
| t ∈ K

}
and picking t = 1, we get

( 1
2
−1

)
=
( 1

0
0

)
+ 2

( 0
1
0

)
− 1

( 0
0
1

)
∈ Span(

( 1
0
0

)
,
( 0

1
0

)
,
( 0

0
1

)
), so we may

remove
( 1

2
−1

)
from S without changing the span: Span(S) = Span(

( 1
0
0

)
,
( 0

1
0

)
,
( 0

0
1

)
).
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Definition 2.11. Let V be a vector space over the field K. A finite subset {v1, . . . , vn} ⊂
V is a set of linearly independent vectors if λ1 ·v1 + · · ·λn ·vn = 0V ⇒ λ1 = . . . = λn = 0K.

Remark. a) In other words, we require that 0V has a unique representation as linear
combination of {v1, . . . , vn}.

b) To be linearly independent vectors means that we do not have redundant informa-
tion.

Notation. If {v1, . . . , vn} ⊂ V is not a set of linearly independent vectors, we say that
they are linearly dependent.
Another common terminology is: v1, . . . , vn are linearly (in-)dependent.
Remark. c) Two vectors v1, v2 ∈ V are linearly dependent if and only if one is a multiple
of the other.

d) If S = {v1, . . . , vn} is a set of linearly independent vectors, then any subset of S is
a set of linearly independent vectors too.

Example. i) {1, t, . . . , td} is a set of linearly independent vectors of K[t]≤d.
ii) S =

{( 1
0
0

)
,
( 0

1
0

)
,
( 1

2
−1

)
,
( 0

0
1

)}
is a set of linearly dependent vectors, indeed( 1

0
0

)
+ 2

( 0
1
0

)
− 1

( 1
2
−1

)
− 1

( 0
0
1

)
=
( 0

0
0

)
.

iii)
( 1

1
0

)
,
( 1

0
1

)
are linearly independent, since the homogeneous linear system 1 1 0

1 0 0
0 1 0


has (0, 0)T as unique solution.

Proposition 2.12. Let V be a vector space over the field K, and let {v1, . . . , vn} ⊂ V be
a finite subset.

1. {v1, . . . , vn} is a set of linearly dependent vectors if and only if one of the vectors is
linear combination of the others.

2. If {v1, . . . , vn} is a set of linearly independent vectors then v1, . . . , vn, vn+1 are lin-
early dependent if and only if vn+1 ∈ Span(v1, . . . , vn).

Proof. 1. ⇒] If v1, . . . , vn are linearly dependent there exist λ1, . . . , λn ∈ K non all zero
(e.g. λj 6= 0K), such that

n∑
i=1

λivi = 0V =⇒ vj =
n∑

i=1,i 6=j
−
(
λi
λj

)
vi

⇐] If vk =
n∑

i=1,i 6=k
αivi (αi ∈ K), then

k−1∑
i=1

αivi + (−1)vk +
n∑

i=k+1
αivi = 0.

2. ⇐] The same as 1. ⇐].

⇒] Let λ1, . . . , λn, λn+1 ∈ K be not all zero scalars, such that
n+1∑
i=1

λivi = 0V . Since

v1, . . . , vn are linearly independent vectors, then λn+1 6= 0K, and arguing as above (1. ⇒]),
we conclude vn+1 ∈ Span(v1, . . . , vn).
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This proposition has the following consequence.
Corollary 2.13. If {v1, . . . , vn} ⊂ V is a set of linearly dependent vectors, then
{v1, . . . , vn, vn+1, . . . , vs} ⊂ V is set of linearly dependent vectors as well.

In particular, {0V , v2, . . . , vn} ⊂ V is a set of linearly dependent vectors.

We conclude this section with a numerical relation between a set of generators and a
set of linearly independent vectors
Theorem 2.14. Let V be a vector space over the field K, let {v1, . . . , vn} ⊂ V be a set of
linearly independent vectors and {w1, . . . , wm} ⊂ V be a set of generators. Then n ≤ m.

Proof. Aiming for a contradiction, let us assumem < n. Since v1 ∈ V = Span(w1, . . . , wm),
there are scalars λ1, . . . , λm ∈ K , such that v1 = λ1w1 + · · ·+ λmwm. Since v1 6= 0V , not
all λi are zero, without lose of generality we may assume λ1 6= 0K, so

λ1w1 = v1 − λ2w2 − . . .− λmwm =⇒ w1 = λ−1
1 v1 −

m∑
i=2

(λ−1
1 λi)wi

Thus V = Span(w1, w2, . . . , wm) = Span(v1, w2 . . . , wm).
We consider now v2 ∈ V = Span(v1, w2, . . . , wm): there are scalars µ1, µ2, . . . , µm ∈ K,

such that v2 = µ1v1 + µ2w2 + · · · + µmwm. Since v1, v2 are linearly independent, not all
µ2, . . . , µm are zero and without lose of generality we may assume µ2 6= 0K, so

w2 = −(µ−1
2 µ1)v1 + µ−1

2 v2 −
m∑
i=3

(µ−1
2 µi)wi

Thus V = Span(v1, w2, w3, . . . , wm) = Span(v1, v2, w3, . . . , wm).
Repeating this processm-times (m < n), we get V = Span(w1, . . . , wm) = Span(v1, . . . , vm),

so vm+1 ∈ Span(v1, . . . , vm), contradicting the fact that v1, . . . , vm, vm+1 are linearly inde-
pendent.

2.3.3 Bases and dimension
Definition 2.15. Let V be a vector space over the field K. A finite subset B =
{v1, . . . , vn} ⊂ V is a basis of V if {v1, . . . , vn} is a set of linearly independent gener-
ators.

Example. • E =





1
0
0
...
0


︸ ︷︷ ︸
e1

,



0
1
0
...
0


︸ ︷︷ ︸
e2

, . . . ,



0
0
...
0
1


︸ ︷︷ ︸
en


is a basis of Kn called the canonical basis.

• Similarly,

E =




1 0 · · · 0
0 0 · · · 0
... ... . . . ...
0 0 · · · 0

 ,


0 1 0 · · · 0
0 0 0 · · · 0
... ... ... . . . ...
0 0 0 · · · 0

 , . . . ,


0 · · · 0 0
... . . . ... ...
0 · · · 0 0
0 · · · 0 1
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is a basis of MK(m,n) called the canonical basis.

• For any α ∈ K the set
{(

1
0

)
,

(
α
1

)}
is a basis of K2.

• E = {1, t, . . . , td} is a basis of K[t]≤d called the canonical basis.

To be a basis means that {v1, . . . , vn} are enough to describe V , and we do not carry
redundant information. Indeed:

Proposition 2.16. Let V be a vector space over the field K, and let B = {v1, . . . , vn} ⊂ V
be a basis of V . Then every element of V can be written uniquely as a linear combination
of {v1, . . . , vn}.

Proof. V = Span(v1, . . . , vn), so for every v ∈ V there exist λ1, . . . , λn ∈ K such that
v = λ1v1 + . . .+ λnvn.

To prove the uniqueness, let us pick two representations of v:

v = λ1v1 + . . .+ λnvn , v = µ1v1 + . . .+ µnvn.

Considering the difference, we get 0V = v − v = (λ1 − µ1)v1 + . . . + (λn − µn)vn; but
v1, . . . , vn are linearly independent, and so λ1 − µ1 = 0K, . . . , λn − µn = 0K, i.e. λ1 =
µ1, . . . , λn = µn.

Definition 2.17. Let V be a vector space over the field K, B = {v1, . . . , vn} ⊂ V be a
basis of V , so that for every v ∈ V there are unique scalars λ1, . . . , λn ∈ K such that

v =
n∑
i=1

λivi .

The scalars λ1, . . . , λn are the coordinates of v with respect to the basis B, and are denoted
by (v)B = (λ1, . . . , λn)T ∈ Kn.

What do two basis of a vector space have in common? The number of elements!

Lemma 2.18. Let V be a vector space over the field K, and let B = {b1, . . . , bn} ⊂ V
and C = {c1, . . . , cm} ⊂ V be bases of V . Then m = n.

Proof. Using that b1, . . . , bn are linearly independent and that c1, . . . , cm are generators,
we obtain n ≤ m by Theorem 2.14. Switching the properties: b1, . . . , bn are generators
and that c1, . . . , cm are linearly independent, we obtain m ≤ n by Theorem 2.14.

Definition 2.19. Let V be a (finitely generated) vector space over the field K. The
dimension of V is the number of elements of a basis of V and it is denoted by dimV .

Example. • dim{0} = 0, indeed B = ∅ is a basis of {0}.
• dimKn = n.
• dimMK(m,n) = m · n.
• dimK[t]≤d = d+ 1.
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• Let A ∈ MK(m,n), then Sol(A|0) / Kn = MK(n, 1) is a vector subspace. The
Rouché-Capelli Theorem tells us Sol(A|0) = {λ1v1 + · · ·λn−rvn−r | λi ∈ K} =
Span(v1, . . . , vn−r) where r = rk(A), and it guarantees that there are no redundant
generators, i.e. v1, . . . , vn−r are linearly independent, so dim Sol(A|0) = n− rk(A).

Proposition 2.20. Let V be a vector space over the field K. The following claims hold
true.

1. Let W / V , then dimW ≤ dim V , and dimW = dimV ⇔ W = V .
2. If dim V = n and {v1, . . . , vp} is a set of linearly independent vectors, then p ≤ n.

Moreover, if p = n then {v1, . . . , vp} is a basis, while if p < n there exist vectors
vp+1, . . . , vn such that {v1, . . . , vp, vp+1, . . . , vn} is a basis of V .
Each set of linearly independent vectors can be completed to a basis.

3. If dim V = n and {w1, . . . , wm} is a set of generators of V , then m ≥ n.
Moreover, if m = n then {w1, . . . , wm} is a basis, while if m > n we can remove
m− n vectors in such a way that the remaining ones are a basis of V .
From each set of generators we can extract a basis.

Proof. 1. Let {w1, . . . , ws} ⊂ W ⊂ V be a basis of W , in particular it is a set of linearly
independent vectors in V . By Theorem 2.14 dimW = s ≤ dim V .
If W = V , clearly dimW = dimV .
Now, let dimW = dimV = n and assume there exists v ∈ V , v /∈ W . Adding v to a basis
{w1, . . . , wn} of W , we get n+ 1 linearly independent in V

Then v /∈ Span(w1, . . . , wn), so {w1, . . . , wn, v} are linearly independent in V (by 2. of
Proposition 2.12), contradiction.

2. The first claim follows from Theorem 2.14.
For the second one, ifp = n, pick W = Span(v1, . . . , vp) and apply 1; else, if p < n,
then Span(v1, . . . , vp) 6= V , so there exists vp+1 /∈ Span(v1, . . . , vp). By Proposition 2.12
v1, . . . , vp, vp+1 are linearly independent. Repeating n − p times this step, we eventually
get a basis of V .

3. The first claim follows from Theorem 2.14.
If w1, . . . , wm are linearly dependent, by 1. of Proposition 2.12 one of the vectors (say
wm) is linear combination of the others, so we could exclude it and still have a set of
generators.

Now, if m = n, then w1, . . . , wm cannot be linearly dependent, otherwise we may
exclude one vector and get a set of generators of V of cardinality n− 1, impossible.

On the other hand, if m > n, then w1, . . . , wm are linearly dependent, by Theorem
2.14, and applying m− n times the procedure above, we can exclude m− n vectors and
get a basis of V .

From the previous proposition we deduce the following important observations.
Remark. i) Every (finitely generated) vector space has a basis!

ii) In a vector space V of dimension n, a set of n vectors S = {v1, . . . , vn} is a set of
generators if and only if it is a set of linearly independent vectors.
So to check if S is a basis, it is enough to check one condition.
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Example. •
( 1

1
0

)
,
( 1

0
1

)
are linearly independent in K3, they are not generators of K3,

since 2 < 3 = dimK3, but we can complete them to a basis, e.g. to
{( 1

1
0

)
,
( 1

0
1

)
,
( 0

1
1

)}
• Let S := {1 + t, t + t2, 1 + t2} ⊂ K[t]≤2. Are they generators? Are they linearly

independent? dimK[t]≤2 = 3, so we can answer both question simultaneously.
Let us check if 1 + t, t+ t2, 1 + t2 are linearly independent:

0 = λ1(1+t)+λ2(t+t2)+λ3(1+t2) = (λ1+λ3)+(λ1+λ2)t+(λ2+λ3)t2 ⇔


λ1 + λ3 = 0
λ1 + λ2 = 0
λ2 + λ3 = 0

So 1 + t, t+ t2, 1 + t2 are linearly independent if and only if the linear system has a
unique solution, so if and only if its matrix of coefficients has non-zero determinant:

det

1 0 1
1 1 0
0 1 1


︸ ︷︷ ︸

A

= det
(

1 0
1 1

)
+ det

(
1 1
0 1

)
= 1 + 1 6= 0 .

So {1 + t, t+ t2, 1 + t2} is a basis of K[t]≤2.
Note that the columns of A are the coordinates of 1 + t, t + t2, 1 + t2 with respect
to the canonical basis {1, t, t2} of K[t]≤2.

Remark. i) By taking coordinates, we can describe a vector in V via a vector in Kn

(n = dimV ). So we can “translate a problem on V into a problem on Kn”. We will make
this more precise and concrete in the next chapter.

ii) In Kn, to check whether n vectors form a basis, it is enough to check if they are
linearly independent, i.e. if the “corresponding” homogeneous linear system has a unique
solution. Its matrix of coefficients A is a square matrix with the n vectors as columns, so
the linear system has a unique solution if and only if A is invertible.

In other words, {v1, . . . , vn} ⊂ Kn is a basis of Kn if and only if the matrix A =
(v1| . . . |vn) (the vi are the columns) has maximal rank (i.e. detA 6= 0).

2.4 A comment on rank
Definition 2.21. Let A ∈ MK(m,n) be a matrix. Let R1, . . . , Rm be its rows and let
C1, . . . , Cn be its columns.

The row space of A is Row(A) = Span(R1, . . . , Rm) /Kn.
The column space of A is Col(A) = Span(C1, . . . , Cn) /Km.

Example. Let A = ( 1 2 3
4 5 6 ) ∈MK(2, 3), and B = ( 1 0 1

2 0 2 ) ∈MK(2, 3) then

Row(A) = Span((1, 2, 3), (4, 5, 6)) /K3, Col(A) = Span (( 1
4 ), ( 2

5 ), ( 3
6 )) /K2.

Row(B) = Span((1, 0, 1), (2, 0, 2)) /K3, Col(B) = Span (( 1
2 ), ( 0

0 ), ( 1
2 )) /K2.

Note that dim Row(A) = dim Col(A) = rk(A) = 2 and dim Row(B) = dim Col(B) =
rk(B) = 1.
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Theorem 2.22. Let A ∈MK(m,n) be a matrix. Then

rk(A) = dim Row(A) = dim Col(A) = rk(AT )

Idea: the elementary row operations do not change Row(A), so if U is in echelon form
and is obtained from A using the Gauss algorithm, we have Row(A) = Row(U), but
dim Row(U) coincides with the number of pivots, i.e. the number of non-zero rows of U
(they are linearly independent!)

Attention: In general Col(A) 6= Col(U), but dim Col(A) = dim Col(U) = number of
pivots.
Remark. Theorem 2.22 gives us a new interpretation/proof of part 1. of Therom 1.11
(Rouché-Capelli). Indeed,

Ax = b is solvable ⇔ b ∈ Col(A) = Span(C1, . . . , Cn)⇔ Span(C1, . . . , Cn) (∗)= Span(C1, . . . , Cn, b)

But Span(C1, . . . , Cn) / Span(C1, . . . , Cn, b), so the equalitiy (∗) holds if and only if

dim Span(C1, . . . , Cn) = dim Span(C1, . . . , Cn, b)⇔ dim Col(A) = dim Col(A|b)⇔ rk(A) = rk(A|b).

2.5 Cartesian and parametric equations
As seen so far, there are two ways to define a vector subspace W /Kn:

• implicitly, as solutions of a homogeneous linear system; these are cartesian equations;
• explicitly, as span of some vectors; these are parametric equations.

Remark. i) If dimW = r, then W can be express using r vectors, so r parameters; or via
a homogeneous linear system with n− r equations (by Rouché-Capelli theorem).
ii) We may use more vectors or equations, but they would not be linearly independent,
i.e. we would have redundant information.

Cartesian → parametric) Given cartesian equations (i.e. a homogeneous linear system)
by solving them we easily get parametric equations.
Parametric → cartesian) given parametric equations W = Span(w1, . . . , wr) / Kn, we
can interpret it as W = Col(A), (where A ∈MK(n, r) has w1, . . . , wr as columns). By
the remark after Theorem 2.22, we see that a vector v = (x1, . . . , xn) ∈ Kn belongs to
W if and only if v ∈ Col(A) if and only if rk(A) = rk(A|v). By imposing this condition
we obtain cartesian equations of W .

Example. Let W = Span((2,−2, 1, 0)T , (1, 0,−1, 1)) / R4, then (x1, x2, x3, x4)T ∈ W if
and only if the linear system 

2 1 x1
−2 0 x2
1 −1 x3
0 1 x4


is solvable. Using elementary row operations the linear system reduces to

1 −1 x3
0 1 x4
0 0 x1 − 2x3 − 3x4
0 0 x2 + 2x3 + 2x4

 which is solvable if and only if v a solution of
{
x1 − 2x3 − 3x4 = 0
x2 + 2x3 + 2x4 = 0
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These are cartesian equations of W .

Alternatively, given parametric equations, we can recover cartesian equations by
eliminating the parameters, as in the following examples.

Example. Let W = Span((2,−5, 1)T ) / R3, i.e.

W =


xy
z

 ∈ R3 |


x = 2t
y = −5t
z = t

, t ∈ R

 (∗)=


xy
z

 ∈ R3 |
{
x− 2z = 0
y − 5z = 0


where in (∗) we used the equation z = t to eliminate the parameter t.

Let U = Span((2,−5, 1)T , (1, 0,−1)) / R3, i.e.

U =


xy
z

 ∈ R3 |


x = 2t+ s
y = −5t
z = t− s

, t, s ∈ R


By using y = −5t to eliminate t we get

{
5x+ 2y = 5s
5z + y = −5s , and then we eliminate s to

get U = {(x, y, z)T ∈ R3 | 5x+ 3y + 5z = 0}.

2.6 Grassmann’s formula
We conclude this chapter discussing the relation between the dimensions of two vector
subspaces and those of their sum and intersection.

Theorem 2.23 (Grassmann’s formula). Let V be a K-vector space, and let U,W / V be
two vector subspaces. Then

dimU + dimW = dim(U ∩W ) + dim(U +W )

Proof. Let us set dimU = p, dimW = q and dim(U ∩W ) = r. By Proposition 2.20 we
have r ≤ p and r ≤ q, and we have to prove that dim(U +W ) = p+ q − r.

Let {b1, . . . , br} be a basis of U∩W and complete it to a basis of U : {b1, . . . , br, cr+1 . . . , cp};
and to a basis of W : {b1, . . . , br, dr+1 . . . , dq}.

We are going to show that S = {b1, . . . , br, cr+1 . . . , cp, dr+1 . . . , dq} is a basis of U+W ,
so that dim(U +W ) = r + (p− r) + (q − r) = p+ q − r.

They generate: take v ∈ U + W , so there exist u ∈ U,w ∈ W such that v = u + w.
But there exist scalars such that

u = α1b1 + . . .+ αrbr + γr+1cr+1 + . . .+ γpcp,
w = β1b1 + . . .+ βrbr + δr+1dr+1 + . . .+ δqdq

and so v = (α1 + β1)b1 + . . .+ (αr + βr)br + γr+1cr+1 + . . .+ γpcp + δr+1dr+1 + . . .+ δqdq.
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They are linearly independent: pick scalars such that

0V = λ1b1 + . . .+ λrbr + ηr+1cr+1 + . . .+ ηpcp + τr+1dr+1 + . . .+ τqdq

and define u := λ1b1 + . . .+λrbr +ηr+1cr+1 + . . .+ηpcp ∈ U , so that −u = τr+1dr+1 + . . .+
τqdq ∈ W and by S3) u ∈ W . Therefore, u ∈ U ∩W and there exists r scalars µ1, . . . , µr
such that u = µ1b1 + . . .+ µrbr. From this it follows

µ1b1 + . . .+ µrbr + τr+1dr+1 + . . .+ τqdq = u− u = 0V

and being b1, . . . , br, dr+1 . . . , dq linearly independent, we get µ1 = . . . = µr = τr+1 = . . . =
τq = 0K. In particular,

0V = u = λ1b1 + . . .+ λrbr + ηr+1cr+1 + . . .+ ηpcp

and being b1, . . . , br, cr+1 . . . , cp linearly independent, we get λ1 = . . . = λr = ηr+1 = . . . =
ηp = 0K.

An immediate consequence of Grassmann’s formula is the following statement.

Corollary 2.24. Let V be a K-vector space, and let U,W / V be two vector subspaces.
Then the sum U+W is direct if and only if dim(U∩W ) = 0 if and only if dimU+dimW =
dim(U +W ).

In particular, let BU be a basis of U and BW be a basis of W , then the sum U +W is
direct if and only if BU ∪ BW is a basis of U +W .

Example. In R4 consider the subspaces

U =
{

(x, y, z, w)T ∈ R4 |
{

x+ y − z = 0
x− y + w = 0

}
, W = Span

(( 1
1
0
0

)
,
( 1

0
1
0

)
,
( 2

1
1
0

))
.

We want to determine a basis (and the dimension) of U , W , U ∩ W , U + W , and
determine whether the sum is direct.

Note that U = Sol(A|0), where A =
(

1 1 −1 0
1 −1 0 1

)
, which reduces to

(
1 1 −1 0
0 −2 1 1

)
(by

applying R2 → R2 −R1), so that

U =




(s− t)/2
(s+ t)/2

s
t

 | s, t ∈ R

 = Span




1
1
2
0

 ,

−1
1
0
2


⇒ dimU = 2

To find a basis of W , we write the generators of W as columns of a matrix, and we
reduce it. By the discussion in Section 2.3.2, the columns corresponding to pivots in the
original matrix are a basis for W :

1 1 2
1 0 1
0 1 1
0 0 0

 R2 → R2 −R1−→


1 1 2
0 −1 −1
0 1 1
0 0 0

 R3 → R3 +R2−→


1 1 2
0 −1 −1
0 0 0
0 0 0
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Thus, W = Span




1
1
0
0

 ,


1
0
1
0


 and dimW = 2.

(*) Now we consider U +W . The sum U +W contains all vectors that can be written
as sum of a vector in U and a vector in W , so it is generated by a basis of U together
with a basis of W :

U +W = Span




1
1
2
0

 ,

−1
1
0
1

 ,


1
1
0
0

 ,


1
0
1
0




Proceeding as above, we get that those four vectors are linearly independent, so that
dim(U +W ) = 4. By Grassmann’s formula dim(U ∩W ) = 0, i.e. U ∩W = {0V }.

Alternative to (*). We may have started by considering U ∩W . A vector in W =
Span

(( 1
1
0
0

)
,
( 0
−1
1
0

))
has the form

( a
a−b
b
0

)
for a, b ∈ R. Such vector belongs to U ∩W if it

satisfies the conditions to be in U :{
a+ (a− b)− b = 0
a− (a− b) + 0 = 0 ⇔

{
a = b
b = 0

So there is a unique possibility: (a, b) = (0, 0). In other words, U ∩W = {0V }, so that
dim(U ∩W ) = 0. By Grassmann’s formula dim(U +W ) = 4, i.e. U ⊕W = R4.
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Chapter 3

Linear maps

In the previous chapter we have introduced vectors and vector spaces. Here, we are going
to introduce the maps between vector spaces (linear maps), so we are going to see how to
link two vector spaces and how to transform vectors.

Before introducing linear maps and their properties, let us briefly recall some general
definitions.

Definition 3.1. Let f : X → Y be a function.
The function f is surjective if “every element in the codomain can be reached”:

∀y ∈ Y ∃x ∈ X : y = f(x) .

The function f is injective if “to different elements in the domain correspond different
elements in the codomain”:

∀x1, x2 ∈ X : f(x1) = f(x2)⇒ x1 = x2

The function f is bijective if it is both surjective and injective:

∀y ∈ Y ∃!x ∈ X : y = f(x)

“Every element in the codomain is reached by exactly one element of the domain”.

If f : X → Y is bijective it is invertible, indeed every y ∈ Y is associated to a single
x ∈ X. So, y 7→ x, where x is the unique element of X mapped to y, defines the inverse
map f−1 : Y → X. It satisfies:

f ◦ f−1 = idY , f−1 ◦ f = idX .

Example. The map R→ [−1, 1], t 7→ sin(t) is surjective, but not injective.
The map R→ R2, t 7→ (2t,−t) is injective, but not surjective.
The map R→ R, t 7→ 3t is both surjective and injective, hence it is bijective.
The map R→ R2, t 7→ (cos(t), sin(t)) is neither surjective nor injective.

In this course we will focus on functions between vector spaces, which preserve the
vector space structure, in particular they will map vector subspaces to vector subspaces
as in the second and third examples, but not in the last one, as it sends the real line to
the unit circle.
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3.1 Linear maps: definition and basic properties
Definition 3.2. Let V,W be vector spaces over the same field K.
A function f : V → W is a linear map if
L1) f(v1 + v2) = f(v1) + f(v2) for all v1, v2 ∈ V (additivity)
L2) f(λ · v) = λ · f(v) for all v ∈ V , λ ∈ K (homogeneity/scaling)

Example.
• The zero-map V → W, v 7→ 0W is linear.
• The identity map idV : V → V, v 7→ v is linear.
• Let A ∈MK(m,n), then the map LA : Kn → Km, v 7→ Av is linear:

LA(v1+v2) = A(v1+v2) = Av1+Av2 = LA(v1)+LA(v2), LA(λ·v) = A(λ·v) = λAv = λLA(v)

• The transposition map MK(m,n)→MK(n,m), A→ AT is linear.

• The “derivative” K[t]≤d → K[t]≤d,
d∑

n=0
ant

n 7→
d∑

n=1
nant

n−1 is linear.

• f : R2 → R, (x, y) 7→ x2 + y2 is not linear, e.g. f(2 · (1, 1)) = 8 6= 4 = 2f(1, 1).
• For n > 1, the determinant of a square matrix det :MK(n, n)→ K, A 7→ det(A) is

not a linear map: det(cA) = cn detA.

Remark. Conditions L1, L2 can be checked simultaneously by proving

f(λv1 + µv2) = λf(v1) + µf(v2) ∀v1, v2 ∈ V, λ, µ ∈ K.

Lemma 3.3. Let f : V → W be a linear map between the K-vector spaces V,W .
Then f(0V ) = 0W .

Proof. f(0V ) = f(0K · v) = 0K · f(v) = 0W .

In particular, if f(0V ) 6= 0W , then f : V → W is not a linear map, e.g. e0 = 1 6= 0, so
exp : R→ R, x 7→ ex is not linear.

Be careful, this condition is necessary, but not sufficient for the linearity: f : R2 →
R, (x, y) 7→ x2 + y2 is not linear, but f(0, 0) = 0.

Properties. Let V,W,U be K-vector spaces, and let f : V → W , g : W → U be linear
maps. Then

1. The composition g ◦ f : V → U, v 7→ g(f(v)) is linear.
2. If f : V → W is invertible (i.e. a bijective function), then f−1 : W → V is linear.

Proof. 1. g(f(λv1 + µv2)) = g(λf(v1) + µf(v2))) = λg(f(v1)) + µg(f(v2)).
2. We need to prove f−1(λw1 + µw2) = λf−1(w1) + µf−1(w2). Define v1 = f−1(w1)

and v2 = f−1(w2), so that w1 = f(v1) and w2 = f(v2). Using f−1 ◦ f = idV and the
linearity of f we get

f−1(λw1+µw2) = f−1(λf(v1)+µf(v2)) = f−1(f(λv1+µv2)) = λv1+µv2 = λf−1(w1)+µf−1(w2).
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Special case. 1. Let A ∈ MK(m, p) and B ∈ MK(p, n). Then LA : Kp → Km and
LB : Kn → Kp, so we can compose them:

LA ◦ LB : Kn −→ Kp −→ Km

v 7→ Bv
w 7→ Aw

so LA◦LB(v) = A(Bv) = (AB)v = LAB(v), thus LA◦LB = LAB (note AB ∈MK(m,n)).

2. If we assume A ∈ MK(n, n) to be invertible (i.e. detA 6= 0), then LA is bijec-
tive/invertible (LA)−1 = LA−1 .

“Linear maps behave well with vector subspaces” .
Lemma 3.4. Let V,W be K-vector spaces, and let f : V → W be a linear map.

1. If U / V , then f(U) = {w ∈ W | ∃u ∈ U s.t. w = f(u)} is a vector subspace of W .
2. If Z /W , then f−1(Z) = {v ∈ V | f(v) ∈ Z} is a vector subspace of V .

Proof. See Quiz 3.

We consider now two cases which will be relevant in this course.
Definition 3.5. Let V,W be K-vector spaces, and let f : V → W be a linear map.
The kernel of f is

ker(f) = f−1({0W}) = {v ∈ V | f(v) = 0W} / V.
The image of f is

Im(f) = f(V ) = {w ∈ W | ∃v ∈ V s.t. w = f(v)} / W.
Notation. Let A ∈ MK(m,n), then we write ker(A) for ker(LA) and Im(A) for

Im(LA).
Example. Let A ∈MK(m,n), and consider LA : Kn → Km, then

ker(A) = {v ∈ Kn | LA(v) = 0} = {v ∈ Kn | Av = 0} = Sol(A|0)
What about the image? Let b ∈ Km, then

b ∈ Im(A)⇔ ∃v ∈ Kn s.t. Av = b⇔ Ax = b is solvable ⇔ b ∈ Col(A)
so Im(A) = Col(A), in particular dim Im(A) = rk(A). In analogy, we define rank of a
linear map.
Definition 3.6. Let V,W be K-vector spaces, and let f : V → W be a linear map. The
rank of f is rk(f) := dim Im(f).
Example. Let f : K[t]≤2 → K[t]≤1, p(t) 7→ tp′′(t)− p′(t).
We firstly verify that f is linear using that the “derivative” is linear:
f(λp(t) + µq(t)) = t(λp(t) + µq(t))′′ − (λp(t) + µq(t))′ = t(λp′′(t) + µq′′(t))− (λp′(t) + µq′(t))

= λ(tp′′(t)− p′(t)) + µ(tq′′(t)− q′(t)) = λf(p(t)) + µf(q(t))
Let p(t) = a0 + a1t+ a2t

2, then f(p(t)) = 2a2t− (a1 + 2a2t) = −a1, so
ker(f) = {p(t) ∈ K[t]≤2 | tp′′(t)− p′(t) = 0} = {a0 + a2t

2|a0, a2 ∈ K} = Span(1, t2)
and

Im(f) = {−a1|a1 ∈ K} = Span(1).

40



3.2 Surjectivity and injectivity of linear maps

3.2.1 Surjectivity
Theorem 3.7 (Surjectivity criterion for linear maps). Let V,W be K-vector spaces, and
let f : V → W be a linear map. Then f is surjective if and only if rk(f) = dimW .

Proof. f is surjective if and only if Im(f) = W . Since Im(f) ⊂ W , the statement follows
from Proposition 2.20.

“Surjective linear maps preserve the property of being generators.”

Proposition 3.8. Let V,W be K-vector spaces, and let f : V → W be a linear map.
If V = Span(v1, . . . , vn), then Span(f(v1), . . . , f(vn)) = Im(f).
In particular, if f is surjective then Span(f(v1), . . . , f(vn)) = W .

Proof. Let w ∈ Im(f), so there exist v ∈ V such that f(v) = w. From V = Span(v1, . . . , vn)
we deduce that there exist λ1, . . . , λn ∈ K such that v = λ1v1 + . . .+ λnvn. Thus

w = f(v) = f(λ1v1 + . . .+ λnvn) = λ1f(v1) + . . .+ λnf(vn) ∈ Span(f(v1), . . . , f(vn)) .

Example. i) Let A =
(

1 2 3
4 5 6

)
∈MR(2, 3). Is LA : R3 → R2 surjective?

{e1, e2, e3} generates R3, so by the previous proposition we know

Im(LA) = Span(LA(e1),LA(e2),LA(e3)) = Span
((

1
4

)
,

(
2
5

)
,

(
3
6

))
= Col(A) = R2

So LA is surjective.

ii) Consider B =

1 2
3 4
5 6

 ∈ MR(3, 2). Is LB : R2 → R3 surjective? As above, we

know

Im(LB) = Span(LA(e1),LA(e2)) = Span


1

3
5

 ,
2

4
6


 = Col(B)

Since dim Col(B) = rk(B) = 2 < 3 = dimR3, the map LB is not surjective.

Note that, for a matrix A ∈ MK(m,n), the map LA : Kn → Km is surjective if and
only if dim ImA = m, i.e. if and only if rk(A) = m. But rk(A) ≤ min(m,n), so if LA is
surjective, then m ≤ n.

3.2.2 Injectivity
Theorem 3.9 (Injectivity criterion for linear maps). Let V,W be K-vector spaces, and
let f : V → W be a linear map. Then f is injective if and only if ker(f) = {0V }.
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Proof. ⇒] Assume f to be injective, and let v ∈ ker f , then f(v) = 0W = f(0V ). Since f
is injective, we deduce v = 0V , so ker(f) = {0V }.
⇐] Assume ker(f) = {0V }, and let v1, v2 ∈ V be vectors with f(v1) = f(v2), then

0W = f(v1)− f(v2) = f(v1 − v2), so v1 − v2 ∈ ker(f) = {0V }. Thus v1 = v2.

“Injective linear maps preserve the property of being linearly independent.”

Proposition 3.10. Let V,W be K-vector spaces, and let f : V → W be an injective linear
map. Then:

If {v1, . . . , vn} ⊂ V are linearly independent, then {f(v1), . . . , f(vn)} ⊂ V are linearly
independent too.

Proof. Write 0W as linear combination of {f(v1), . . . , f(vn)}:

0W = λ1f(v1) + . . . λnf(vn) = f(λ1v1 + . . . λnvn)⇒ λ1v1 + . . . λnvn ∈ ker(f) = {0V }

so λ1v1 + . . . λnvn = 0V . Using that {v1, . . . , vn} ⊂ V are linearly independent, we get
λ1 = . . . = λn = 0K.

Example. i) Let A =
(

1 2 3
4 5 6

)
∈ MR(2, 3). The map LA : R3 → R2 is injective if and

only if 0 = dim ker(A) = dim Sol(A|0). By Rouché-Capelli, the solutions of the linear
system Ax = 0 are a vector space of dimension 3 − rk(A) = 3 − 2 = 1, so LA is not
injective.

ii) Consider B =

1 2
3 4
5 6

 ∈ MR(3, 2). This time the solutions of the linear system

Bx = 0 form a vector space of dimension 2 − rk(B) = 2 − 2 = 0, so LB : R2 → R3 is
injective.

Note that, for a matrix A ∈ MK(m,n), the map LA : Kn → Km is injective if and
only if dim kerA = 0, i.e. if and only if n = rk(A). But rk(A) ≤ min(m,n), so if LA is
injective, then n ≤ m.

3.2.3 Bijectivity
Terminology. A bijective linear map f : V → W is called isomorphism, and we say that
V and W are isomorphic.

A function is bijective if it is both surjective and injective, so an isomorphism preserves
both the property of being generators and the property of being linearly independent. In
other words: “Bijective linear maps preserve bases”.

Proposition 3.11. Let V,W be K-vector spaces, and let f : V → W be a bijective linear
map. If {v1, . . . , vn} is a basis of V , then {f(v1), . . . , f(vn)} is a basis of W , in particular
dim V = dimW .

Proof. It follows immediately from Proposition 3.8 and 3.10.

Remark. Let A ∈MK(m,n) be a matrix. If m 6= n then LA : Kn → Km is not invertible,
and so A is also not invertible. That is why in Section 1.2.4 we stuck to square matrices.
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3.3 Rank-nullity theorem and its consequences
Theorem 3.12 (Rank-nullity theorem). Let V,W be K-vector spaces, and let f : V → W
be a linear map. Then

dim ker f + dim Im(f) = dimV .

Proof. Let B = {b1, . . . , bp} be a basis of ker f (recall, B = ∅ if ker f = {0}), and complete
it to a basis of V :

B′ = {b1, . . . , bp, bp+1, . . . , bn}.

By Proposition 3.8, we know that

Im(f) = Span(f(b1), . . . , f(bp), f(bp+1), . . . , f(bn)) = Span(0W , . . . , 0W , f(bp+1), . . . , f(bn))
= Span(f(bp+1), . . . , f(bn)).

Thus {f(bp+1), . . . , f(bn)} generates Im(f). If we show that they are linearly independent,
they form a basis, so dim Im(f) = n− p and we are done.

Let λp+1, . . . , λn ∈ K be such that

0W = λp+1f(vp+1) + . . .+ λnf(vn) = f(λp+1vp+1 + . . .+ λnvn)

hence λp+1vp+1 + . . .+ λnvn ∈ ker(f).
But ker(f) = Span(b1, . . . , bp), so there exists λ1, . . . , λp ∈ K such that

λp+1vp+1 + . . .+ λnvn = λ1v1 + . . . λpvp

We obtain λ1v1+. . . λpvp−λp+1vp+1−. . .−λnvn = 0V , but B′ is a set of linearly independent
vectors, so λ1 = . . . = λp = λp+1 = . . . , λn = 0K.

Example. Let f : K[t]≤2 → K[t]≤1, p(t) 7→ tp′′(t)− p′(t).
We have seen that ker(f) = Span(1, t2) and Im(f) = Span(1), so dim ker(f) = 2 and

dim Im(f) = 1.

Remark. Let A ∈MK(m,n), then Theorem 3.12 for LA : Kn → Km reads

dim Sol(A|0) = dim ker(LA) = n− dim Im(A) = n− rk(A),

so the space of solutions of a solvable linear system depends on n− rk(A) parameters, as
we already knew from part 2. of Therom 1.11 (Rouché-Capelli).
Remark. Let f : V → W be a linear map, the Rank-nullity theorem has the following
consequences (1. and 2. were already deduced above in the case of LA, for A ∈MK(m,n)).

1. If f is surjective, then dim Im(f) = dimW , so dimW = dimV −dim ker f ≤ dim V .
In other words, if dim V < dimW , then f cannot be surjective.

2. If f is injective, then dim ker(f) = 0, so dim V = dim Im(f) ≤ dimW . In other
words, if dim V > dimW , then f cannot be injective.

3. If f is bijective, then dim V = dimW . In other words, if dim V 6= dimW , then f
cannot be bijective (see also Proposition 3.11).

4. If dim V = dimW , then f is injective if and only if f is surjective.
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Example. � Let f : K[t]≤3 →MK(2, 2) be the linear map given by

f(p(t)) =
(
p(0) p′(0)
p′′(0) p′′′(0)

)
i.e. f(a0 + a1t+ a2t

2 + a3t
3) =

(
a0 a1
2a2 6a3

)

a0 + a1t + a2t
2 + a3t

3 ∈ ker(f) ⇔ a0 = a1 = 2a2 = 6a3 = 0, i.e. ker(f) = {0}, so f is
injective.
Since dimK[t]≤3 = dimMK(2, 2) = 4, f is also surjective, hence an isomorphism.

� Let g : K[t]≤3 →MK(2, 2) be the linear map defined by g(p(t)) =
(

p(0) p′(0)
−p(0) −p′′(0)

)
i.e.

g(a0 + a1t+ a2t
2 + a3t

3) =
(
a0 a1
−a0 −2a2

)

We get that a0 + a1t + a2t
2 + a3t

3 ∈ ker(g) ⇔ a0 = −a0 = a1 = −2a2, i.e ker(g) =
{a3t

3 | a3 ∈ K} = Span(t3), so g is not injective and also not surjective, because
dimK[t]≤3 = dimMK(2, 2) = 4.
Note that dim ker(g) = 1, so rk(g) = 4−1 = 3, indeed Im(g) = Span(g(1), g(t), g(t2), g(t3)) =
Span (( 1 0

−1 0 ), ( 0 1
0 0 ), ( 0 0

0 −2 )) .

� Let h : K[t]≤2 → K2 be the linear map defined by h(p(t)) =
(

p(1)
p(−1)

)
i.e.

h(a0 + a1t+ a2t
2) =

(
a0 + a1 + a2
a0 − a1 + a2

)

We get that a0 + a1t + a2t
2 ∈ ker(h) ⇔ a0 + a1 + a2 = a0 − a1 + a2 = 0K, i.e ker(h) =

{a0 + a1t + a2t
2 | a1 = 0K, a2 = −a0} = Span(1 − t2), so h is not injective, but rk(h) =

3− 1 = 2 = dimK2, so h is surjective.

3.4 How to give a linear map?
Let V,W be K-vector spaces, how can we construct a linear map f : V → W?
To define it, we need to associate to each vector v ∈ V a vector w ∈ W in such a way,
that f respects additivity (L1) and scaling (L2). Let us proceed as follows:
1. Choose a basis B = {b1, . . . , bn} of V , so for each v ∈ V there exist λ1, . . . , λn ∈ K
such that v = λ1b1 + . . .+ λnbn: (v)B = (λ1, . . . , λn)T .
2. Choose the image of the n vectors in B: wi := f(bi)
3. Define f(v) by linearity:

f(v) = f(λ1b1 + . . .+ λnbn) = λ1f(b1) + . . .+ λnf(bn) = λ1w1 + . . .+ λnwn

By construction such map is linear, so to give a linear map it is enough to give the image
of the vector of a basis: “A linear map is completely determined by its behaviour on a
basis”.
Example. Let f : Q2 → Q[t]≤2 be defined via

f

(
1
0

)
= 1 + t, f

(
1
1

)
= t2 − t

then f( 1
3 ) = f(−2( 1

0 ) + 3( 1
1 )) = −2(1 + t) + 3(t2 − t) = −2− 5t+ 3t2.
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Example. Let g : R3 → R2 be defined via

g(e1) =
(

1
6

)
, g(e2) =

(
−2
0

)
, g(e3) =

(
3
−2

)

then g

xy
z

 = g(xe1 + ye2 + ze3) = x+
(

1
6

)
+ y

(
−2
0

)
+ z

(
3
−2

)
=
(

1 −2 3
6 0 −2

)xy
z

.

This construction easily generalize to any linear map Kn → Km, in other words:
Lemma 3.13. Every linear map f : Kn → Km is of the form f = LA for some A ∈
MK(m,n).

We are going to see how matrices encode linear maps between arbitrary vector spaces
(and not only Kn).
Example. Let f : K[t]≤3 →MK(2, 2) be the linear map defined by

f(a0 + a1t+ a2t
2 + a3t

3) =
(
a0 a1
2a2 6a3

)

Here a central role is played by the coefficients a0, a1, a2, a3. We would like to highlight
their role.

The first step is to link any vector space with a suitable Kn.
Theorem 3.14 (Isomorphism theorem with Kn). Let V be a K-vector space of dimension
dim V = n. Then, there exists an isomorphism f : V → Kn.

Proof. Let B = {b1, . . . , bn} be a basis of V and define the linear map f : V → Kn via
f(bj) = ej, where {e1, . . . , en} is the canonical basis of Kn.

We get immediately that Im(f) = Span(f(b1), . . . , f(bn)) = Span(e1, . . . , en) = Kn, so
f is surjective. But dimV = n = dimKn, so f is bijective.
Corollary 3.15. Let V,W be K-vector spaces. They are isomorphic (V ∼= W ) if and only
if dim V = dimW .

Proof. ⇒] Done in Proposition 3.11.
⇐] By Theorem 3.14, there exists isomorphisms f : V → Kn and g : V → Kn; hence
g−1 ◦ f : V → W is an isomorphism.

We have then a dictionary to move from V to Kn and back.
Definition 3.16. Let V be a K-vector space and let B = {b1, . . . , bn} be a basis of V ,
and let E = {e1, . . . , en} be the canonical basis of Kn.

The linear map XB : V → Kn, bi 7→ ei is called the coordinate map of B.
The linear map PB : Kn → V, ei 7→ bi is called the parametrization map of B.

Let v = λ1b1 + . . . + λnbn ∈ V , then XB(v) = λ1e1 + . . . + λnen =
(
λ1
...
λn

)
, so XB

extrapolates the coordinates of v with respect to the basis B.

Note that PB = X−1
B , so PB

( α1
...
αn

)
= α1b1 + . . .+ αnbn.

We have now all the ingredients to encode a linear map into a matrix.
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3.4.1 Transformation matrix
Let V,W be K-vector spaces, let f : V → W be a linear map and let B = {b1, . . . , bn} be
a basis of V and C = {c1, . . . , cm} be a basis of W .

Let us consider the map XC ◦ f ◦ PB : Kn → Km. By Lemma 3.13, it coincides with
the map LA for a matrix A ∈MK(m,n), and we want determine this matrix A.

XC ◦ f ◦ PB = LA : Kn → Km ,
V W

Kn Km

f

XCPB

LA

A =?

The map XC ◦ f ◦ PB = LA : Kn → Km is determined by its behaviour on the canonical
basis {e1, . . . , en} of Kn:

A · ej = LA(ej) = XC(f(PB(ej))) = XC(f(bj)) ⇐⇒ A =
(
XC(f(b1))

∣∣∣ . . . ∣∣∣XC(f(bn))
)

In words: the j-th column of A is given by the coordinates of f(bj) with respect to the
basis C.

Definition 3.17. Let V,W be K-vector spaces, let f : V → W be a linear map and let
B = {b1, . . . , bn} be a basis of V and C = {c1, . . . , cm} be a basis of W .
The transformation matrix of f with respect to B and C is the unique matrix MB

C (f) =
A ∈MK(m,n) such that

LA = XC ◦ f ◦ PB,

i.e. whose j-th column is given by the coordinates of f(bj) with respect to the basis C.

Example. � For a matrix A ∈ MK(m,n), we have ME
E ′(LA) = A, where E and E ′ are

the canonical bases of Kn and of Km.
� Consider V = K[t]≤2 and W = MK(2, 2), with bases B = {1, t, t2} and C =

{( 1 0
0 0 ), ( 0 1

0 0 ), ( 0 0
1 0 ), ( 0 0

0 1 )}, and let f : K[t]≤2 →MK(2, 2) be the linear map

f(a0 + a1t+ a2t
2) =

(
a0 a0 + a1 + a2

a0 − a1 + a2 0

)

Then

f(1) =
(

1 1
1 0

)
= 1

(
1 0
0 0

)
+ 1

(
0 1
0 0

)
+ 1

(
0 0
1 0

)
+ 0

(
0 0
0 1

)

f(t) =
(

0 1
−1 0

)
= 0

(
1 0
0 0

)
+ 1

(
0 1
0 0

)
+ (−1)

(
0 0
1 0

)
+ 0

(
0 0
0 1

)

f(t2) =
(

0 1
1 0

)
= 0

(
1 0
0 0

)
+ 1

(
0 1
0 0

)
+ 1

(
0 0
1 0

)
+ 0

(
0 0
0 1

) =⇒MB
C (f) =


1 0 0
1 1 1
1 −1 1
0 0 0



� Consider the K-vector spaces K[t]≤2 and K2, with bases B = {1, 1 + t, 1 + t2} and
C = {e1, e1 + e2}, and let h : K[t]≤2 → K2 be the linear map defined by

h(a0 + a1t+ a2t
2) =

(
a0 + a1 + a2
a1 − 2a2

)
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Then

h(1) =
(

1
0

)
= 1 · e1 + 0 · (e1 + e2),

h(1 + t) =
(

2
1

)
= 1 · e1 + 1 · (e1 + e2),

h(1 + t2) =
(

2
−2

)
= 4 · e1 − 2 · (e1 + e2)

=⇒MB
C (h) =

(
1 1 4
0 1 −2

)

Remark. The main utility of the transformation matrix is to provide us a very effective
dictionary to translate problems on abstract vector spaces into problems on Kn. Indeed, as
explained in the following statements, via the transformation matrix we may: i) translate
a problem on a linear map into a matrix problem; ii) reduce complicated computations
to matrix multiplications.

Proposition 3.18. Let V,W be K-vector spaces, with bases B = {b1, . . . , bn} and C =
{c1, . . . , cm} respectively. Let f : V → W be a linear map and let A := MB

C (f) be the
corresponding transformation matrix. If v = ∑n

j=1 λjbj and f(v) = ∑m
i=1 µici, then

A ·


λ1
λ2
...
λn

 =


µ1
µ2
...
µm



In particular, v ∈ ker f ⇔


λ1
λ2
...
λn

 ∈ kerA and dim Im(f) = rk(f) = rk(A).

Proof. By definition of A we have AXB(v) = XC(f(v)), and the result follows by the
definition of coordinate map.

We have already seen a reason behind the definition of the matrix product (row-
column), namely to translate linear systems into matrices. We see now other motivations.

Proposition 3.19. Let V,W,U be K-vector spaces, with bases B, C and D respectively.
1) Let f : V → W and g : W → U be linear maps, then

MB
D(g ◦ f) =MC

D(g) · MB
C (f).

2) Let f : V → W be an invertible linear map, then

(MB
C (f))−1 =MC

B(f−1).

3) Let B′, C ′ be bases of V and W respectively and let f : V → W be a linear map, then

MB′
C′ (f) =MC

C′(idW ) · MB
C (f) · MB′

B (idV ).

Proof. The proof of 1) is a computation using the various definitions, similar to the proof
of Proposition 3.18.
2) and 3) follow from 1).
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Definition 3.20. Let V be a K-vector spaces, and let B,B′ be bases of V . The matrix

MB
B′(idV ),

is called change of basis matrix or transition matrix.

Note that MB
B′(idV ) =MB′

B (idV )−1.

We stress that the columns of MB
B′(idV ) are the coordinates of the vectors in B with

respect to the basis B′, and it holds (v)B′ =MB
B′(idV ) · (v)B.

Example. Let us consider R2 with bases B = {e1, e2} and B′ = {e1 − 2e2, 2e1 − 3e2}.
Then

e1 = −3(e1 − 2e2) + 2(2e1 − 3e2) , e2 = −2(e1 − 2e2) + 1(2e1 − 3e2) ,

Hence
MB
B′(idR2) =

(
−3 −2
2 1

)

So, e.g. let v ∈ R2 be the vector having coordinates (v)B = (4,−7)T with respect to B,
then v with respect to B′ has coordinates

(v)B′ =MB
B′(idR2) =

(
−3 −2
2 1

)
·
(

4
−7

)
=
(

2
1

)
.
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Chapter 4

Endomorphisms and diagonalization

In this chapter we focus on a certain family of linear maps, the endomorphisms: linear
maps from a vector space to itself.

Definition 4.1. Let V be a K-vector space. A linear map f : V → V is called endomor-
phism.

We would like to understand how the choice of a basis B of V affects the form of the
transformation matrix MB

B(f).
In particular, we would like to be able to find a basis B, for whichMB

B(f) is as simplest
as possible and for which the geometric meaning of f becomes clearer.

Example. Let us consider the real vector space V = R2, and consider the linear map
f : R2 → R2 given by the reflection about a line l ⊂ R2 of slope θ passing through 0R2 .

Let us consider the canonical basis E = {e1, e2} of R2 and write the transformation
matrix ME

E(f): geometric and trigonometric considerations give:

f(e1) =
(

cos(2θ)
sin(2θ)

)
, f(e2) =

(
sin(2θ)
− cos(2θ)

)
=⇒ ME

E(f) =
(

cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

)
= A .

Let us now consider a basis B = {b1, b2} of R2, capturing the geometry of the transfor-
mation f . Let b1, b2 ∈ V be vector such that b1 lies on the line l and b2 is orthogonal to l;
for example let b1 =

(
cos(θ)
sin(θ)

)
and b2 =

(
− sin(θ)
cos(θ)

)
. In other words f : xb1 + yb2 7→ xb1− yb2

and the transformation matrix MB
B(f) is:

f(b1) = b1 , f(b2) = −b2 =⇒ MB
B(f) =

(
1 0
0 −1

)
= D .

Let P be the change of basis matrix

P :=MB
E (idR2) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)

By Proposition 3.19, changing basis affects the transformation matrix, as follows:

MB
B(f) =ME

B(idV )ME
E(f)MB

E (idV ) i.e. D = P−1AP.
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Definition 4.2. Let A,B ∈ MK(n, n) be matrices. They are similar if there exists an
invertible matrix P ∈MK(n, n) such that B = P−1AP .
Remark. Two matrices A,B ∈MK(n, n) are similar if and only if they represent the same
linear map with respect to different bases.

In particular, similar matrices A,B ∈ MK(n, n) have the same rank and the same
determinant det(B) = det(P−1AP ) = det(A) (by Binet).

Question. Given an endomorphism f : V → V , is it possible to find a basis B of V
such that MB

B(f) is diagonal?
In other words, given a matrix A ∈ MK(n, n), are there a diagonal matrix D ∈

MK(n, n) and an invertible matrix P ∈MK(n, n) such that D = P−1AP?

Every endomorphism f : V → V can be encoded in a transformation matrix A =
MB
B(f) ∈MK(n, n), and interpreted as the endomorphism LA : Kn → Kn. From now on

we simplify the discussion by considering only endomorphisms of the form LA : Kn → Kn,
given by a square matrix A ∈MK(n, n).

All definitions and claims made for matrices can be transferred evenly to endomor-
phisms, by taking a transformation matrix: for example, an endomorphisms f : V → V
is diagonalizable if and only if a transformation matrix A =MB

B(f) ∈ MK(n, n) is diag-
onalizable (see Definition 4.4 and Theorems 4.5, 4.14 below).

4.1 Eigenvalues and eigenvectors
Definition 4.3. Let A ∈MK(n, n) be a square matrix.

A scalar λ ∈ K is an eigenvalue of A, if there exists a non-zero vector v ∈ Kn, v 6= 0
such that A · v = λ · v.

A non-zero vector v ∈ Kn, v 6= 0 is an eigenvector of A if there exists a scalar λ ∈ K
such that A(v) = λ · v; in this case, λ is called the eigenvalue of v.

The spectrum ofA is the set of all eigenvalues ofA: S(A) = {λ ∈ K | λ is an eigenvalue of A}.
Example. 1) In the previous example, the vectors b1 and b2 are eigenvectors with eigen-
value 1 and −1 respectively.

2) Let A =

1 2 4
4 1 2
2 4 1

 ∈MQ(3, 3). The endomorphism LA : Q3 → Q3 has eigenvector

u = (1, 1, 1)T of eigenvalue 7, indeed A · u = (7, 7, 7) = 6 · u.
3) Let A ∈MK(n, n) be a square matrix and v ∈ ker(A), v 6= 0, then A(v) = 0 = 0K ·v,

so 0K is an eigenvalue of A.
Remark. a) By 3) we get that ker(A) 6= {0} if and only if 0K is an eigenvalue of A.
b) More in general, a scalar λ ∈ K is an eigenvalue of A ∈ MK(n, n) if and only if
ker(λ · In − A) 6= {0}.

Notation. By writing a matrix containing several zeroes, we will use the convention
to omit the zero entries.

We denote a diagonal matrix

 δ1
δ2

...
δn

 by the short-hand notation diag(δ1, . . . , δn).
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Definition 4.4. Let A ∈ MK(n, n) be a square matrix. We say that A is diagonalizable
if there exists a basis of Kn made of eigenvectors of A.

The meaning of Definition 4.4 is that a matrix A ∈MK(n, n) is diagonalizable if it is
representable in diagonal form, i.e. A is similar to a diagonal matrix.

Theorem 4.5 (1st diagonalization criterion). Let A ∈MK(n, n) be a square matrix.
The matrix A is diagonalizable if and only if there are a diagonal matrix D ∈MK(n, n)

and an invertible matrix P ∈MK(n, n) such that D = P−1AP .

Proof. We start with the preliminary observation that A = ME
E(LA), where E is the

canonical basis of Kn.
We now prove the two implications.
⇒] If A is diagonalizable, there exists a basis C = {c1, . . . , cn} of Kn made of eigen-

vectors. Let D :=MC
C(LA) and P :=MC

E(id), then P is invertible (since id is bijective)
and D is diagonal: Aci = λici and

D =MC
C(LA) =


λ1

λ2
. . .

λn

 = diag(λ1, . . . , λn)

By Proposition 3.19

P−1AP =ME
C(id)ME

E(LA)MC
E(id) =MC

C(LA) = D

⇐] Assume there are a diagonal matrix D = diag(δ1, . . . , δn) ∈ MK(n, n) and an
invertible matrix P ∈MK(n, n) such that D = P−1AP . In other words, D represents LA
with respect to another basis C = {c1, . . . , cn} and P =MC

E(id).
We prove that ci are eigenvalues. Applying the definitions we get

Aci = PDP−1ci = PDei = Pδiei = δici

4.2 Characteristic polynomial
How do we find eigenvalues and eigenvectors?

Let A ∈MK(n, n) be a square matrix. We have the following chain of equivalences:

λ ∈ K is an eigenvalue of A ⇐⇒ ker(λ · In − A) 6= {0V }
⇐⇒ rk(λ · In − A) < n

⇐⇒ det(λ · In − A) = 0

So to find the eigenvalues we look for scalars yielding an homogenous linear system
(λ · In − A)x = 0 having more that one solution.

The eigenvectors relative to an eigenvalue are the non-trivial solutions of this homoge-
nous linear system.
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Example. Consider the linear map f : R2 → R2 given by the reflection about a line
l ⊂ R2 of slope θ = π

6 passing through 0R2 . Its transformation matrix with respect to the
canonical basis of R2 is:

A =ME
E(f) =

(
1
2

√
3

2√
3

2 −1
2

)
The eigenvalues of A are real numbers such that

0 = det(λIn−A) = det
(
λ− 1

2 −
√

3
2

−
√

3
2 λ+ 1

2

)
= (λ−1

2)(λ+1
2)−
√

3
2 ·
√

3
2 = λ2−1 = (λ−1)(λ+1),

so the eigenvalues are ±1.
Now, to determine the eigenvectors relative to the eigenvalue λ = 1, we have to

compute ker(1 · In − A):

ker
(

1− 1
2 −

√
3

2
−
√

3
2 1 + 1

2

)
= ker

(
1
2 −

√
3

2
−
√

3
2

3
2

)
= ker

(
1 −

√
3

0 0

)
= Span

((√
3

1

))

Similarly, the eigenvectors relative to the eigenvalue λ = −1 are obtained by computing
ker(−1 · In − A):

ker
(
−1− 1

2 −
√

3
2

−
√

3
2 −1 + 1

2

)
= ker

(
−3

2 −
√

3
2

−
√

3
2 −1

2

)
= ker

(√
3 1

0 0

)
= Span

((
1
−
√

3

))

We got 2 eigenvalues (
(√

3
1

)
and

(
1
−
√

3

)
) which are linearly independent, so we got a

basis of of R2: A is diagonalizable (as we already knew).
Our aim is now to replicate this procedure in general and find a strategy to determine

whether a square matrix is diagonalizable, and if so, how to find a basis of eigenvectors.
Definition 4.6. Let A ∈MK(n, n) be a square matrix. The characteristic polynomial of
A is the polynomial pA(t) = det(tIn − A) ∈ K[t].
Proposition 4.7. Let A ∈MK(n, n) be a square matrix.

• The eigenvalues of A are the roots in K of its characteristic polynomial pA(t) ∈ K[t].
• The characteristic polynomial pA(t) has degree n.
• In particular, the spectrum S(A) is a set of cardinality at most n.

Example. a) The characteristic polynomial of a matrix A = ( a bc d ) ∈MK(2, 2) is

det
(
t− a −b
−c t− d

)
= t2 − (a+ d)t+ (ad− bc)

b) In general, the characteristic polynomial of a matrix A ∈MK(n, n) has the form

pA(t) = tn + an−1t
n−1 + · · ·+ (−1)n detA

Some authors define the characteristic polynomial to be det(A− tIn). This definition
differs from our definition pA(t) = det(tIn−A) by a sign (−1)n, so it still have the property
of having the eigenvalues of A as roots; however our definition gives a monic1 polynomial,
whereas with the alternative definition it is monic only when n is even.

1monic means that the coefficient of the term of highest degree is 1.
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Remark. In the diagonalization problem, the field K plays an important role!
The natural chain of inclusions Q ⊂ R ⊂ C yields the inclusions

MQ(n, n) ⊂MR(n, n) ⊂MC(n, n)

It is possible that a matrix is diagonalizable over C but not over R, and that a matrix is
diagonalizable over R but not over Q.

Example. c) The characteristic polynomial of M = ( 0 −1
1 0 ) is t2 + 1.

Over R the polynomial t2 + 1 has no root, so M has no eigenvalues, and it cannot be
diagonalizable.

On the other hand, if K = C, then t2 + 1 has 2 roots: ±i (i is the imaginary unit:
i2 = −1) and we will see that M is diagonalizable over C.

d) The characteristic polynomial of N = ( 0 1
2 0 ) is t2 − 2, which has no root in Q so N

cannot be diagonalizable over Q. But t2 − 2 has 2 real roots: ±
√

2 and we will see that
N is diagonalizable over R.

4.3 Multiplicities
Let λ ∈ K be an eigenvalue of A ∈MK(n, n). The eigenvectors relative to the eigenvalue
λ (together with 0) are the solutions of a certain homogeneous linear system, so they form
a vector subspace of Kn.

Definition 4.8. Let λ ∈ K be an eigenvalue of A ∈MK(n, n).
The eigenspace associated to λ is the vector subspace Vλ := ker(λIn − A).
The geometric multiplicity of λ is gλ := dimVλ = n− rk(λIn − A).
The algebraic multiplicity of λ is aλ := max{k ∈ N | (t− λ)k divides pA(t)}.

“The algebraic multiplicity of an eigenvalue λ counts how many times λ is a root of
pA(t), i.e. to which power (t− λ) appears in pA(t)”.

Example. Let pA(t) = (x−1)3(x+2), then f has 2 eigenvalues: 1 and −2, with algebraic
multiplicities a1 = 3, a−2 = 1.

Let pA(t) = (x+ 1)4(x2 + 1)2. Over K = Q or R, this polynomial has only −1 as root
and a−1 = 4.

Over K = C, the polynomial factorize as pA(t) = (x + 1)4(x− i)2(x + i)2, so it has 3
roots: −1, i, −i with algebraic multiplicities a−1 = 4, ai = a−i = 2.

Theorem 4.9 (Fundamental theorem of algebra). Every non-zero polynomial p(t) ∈ C[t]
with complex coefficients has exactly n roots, counted with multiplicity.
In other words, if {z1, . . . , zr} ⊂ C are the complex roots of p(t), then

r∑
i=1

azi = n.

Proposition 4.10. Let λ ∈ K be an eigenvalue of A ∈MK(n, n). Then

1 ≤ gλ ≤ aλ ≤ n.
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Definition 4.11. Let A ∈MK(n, n) be a square matrix and let λ ∈ S(A).
The eigenvalue λ is called regular if aλ = gλ.
The eigenvalue λ is called simple if aλ = 1.

Note that if aλ = 1, then gλ = 1; so a simple eigenvalue is automatically regular.

Proposition 4.12. Let λ1, λ2 ∈ K, λ1 6= λ2 be distinct eigenvalues of A ∈ MK(n, n).
Then Vλ1 ∩ Vλ2 = {0}

Proof. Let v ∈ Vλ1 ∩ Vλ2 . From v ∈ Vλ1 , we get A(v) = λ1v; and from v ∈ Vλ2 , we get
A(v) = λ2v. Therefore, λ1v = A · v = λ2v, so (λ1 − λ2)v = 0. Since λ1 − λ2 6= 0K, by the
zero-product property we get v = 0.

In particular, two eigenvectors having distinct eigenvalues are linearly independent.
More generally, “the eigenspaces carry independent information!”

Proposition 4.13. Let λ1, . . . λr ∈ K be pairwise distinct eigenvalues (λi 6= λj for i 6= j)
of A ∈MK(n, n). For each i = 1, . . . , r, let vi be an eigenvalue in Vλi.

Then {v1, . . . , vr} ⊂ Kn is a set of linearly independent vectors.

To diagonalize a matrix A ∈MK(n, n) means that we can find a basis of Kn made of
eigenvectors of A; in other words, we can reconstruct the effect of the transformation A by
looking at the effect on the single eigenenspaces. Since the eigenspaces carry independent
informations, to diagonalize A we need to find a basis Bλi for each eigenspace Vλi and
have n = ∑r

i=1 gλi . Indeed,
B = Bλ1 ∪ · · · Bλr

is a set of linearly independent vectors (by Proposition 4.13), and to generate Kn, we need
that B has n elements.

Note that
aλ1 + aλ2 + · · · + aλr ≤ deg pA = n

≤ ≤ ≤

gλ1 + gλ2 + · · · + gλr

so to have gλ1 + gλ2 + · · ·+ gλr = n we need that all ≤ are equalities.
Summing up, we have deduced the following important criterion

Theorem 4.14 (2nd diagonalization criterion). Let A ∈ MK(n, n) be a square matrix.
and let S(A) = {λ1, . . . , λr} be the set of eigenvalues of A (roots in K of pA). Then the
following are equivalent:

1. A is diagonalizable.

2.
r∑
i=1

gλi = n.

3.
r∑
i=1

aλi = n and for every aλi = gλi for every i = 1, . . . , k.

Corollary 4.15. Let A ∈MK(n, n) be a square matrix.
If pA has all its roots in K and each eigenvalue is simple, then A is diagonalizable.
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Proof. pA has all its roots in K means
∑

λ∈S(A)
aλ = n.

Each eigenvalue is simple means 1 ≤ gλ ≤ aλ = 1, so aλ = gλ for every λ ∈ S(A).
Example. The characteristic polynomial of M = ( 0 −1

1 0 ) is t2 + 1, so M is not diagonal-
izable over R (as already seen).

But over C, the matrix M has two eigenvalues: ±i, both simple, so M is diagonalizable
over C.

Similarly, the characteristic polynomial ofN = ( 0 1
2 0 ) is t2−2, soN is not diagonalizable

over Q, but it is diagonalizable over R.
Example. The characteristic polynomial of B = ( 1 1

0 1 ) ∈MR(2, 2) is (t− 1)2, so it has a
single eigenvalue 1 with algebraic multiplicity a1 = 2.

Let us now compute the corresponding eigenspace:

V1 = ker(I2 −B) = ker
(

1− 1 −1
0 1− 1

)
= ker

(
0 −1
0 0

)
= Span(( 1

0 )) ⇒ g1 = 1 < 2

Thus, B is not diagonalizable (neither over R nor over C).

Summary of diagonalization process

Input A square matrix A ∈MK(n, n)
Step 1 Determine the characteristic polynomial pA(t) = det(tIn − A) of A and factorize it

over K, i.e. determine the eigenvalues λ1, . . . , λr of A and their algebraic multiplic-
ities aλ1 , . . . , aλr .

Check 1 If
r∑
i=1

aλi < n, then Output: A is not diagonalizable. Else, go to Step 2:

[This check is not necessary if K = C, by Theorem 4.9]
Step 2 For each λi find a basis Bλi of the eigenspace Vλi , and determine its geometric

multiplicity gλi .
Check 2 If gλi < aλi for some i = 1, . . . , r, then Output: A is not diagonalizable. Else,
Output A is diagonalizable: B = Bλ1 ∪ . . . ∪ Bλr is a basis of Kn made of eigenvectors of A,

and moreover:
MB
E (idV ) · ME

E(LA) · ME
B(idV ) = MB

B(LA)

= = = =

P−1 · A · P = D
where D = diag(λ1, . . . , λ1︸ ︷︷ ︸

aλ1−times

, . . . , λr, . . . , λr︸ ︷︷ ︸
aλr−times

) and the columns of P are the vectors of

Bλ1 ∪ . . . ∪ Bλr (respecting the order!).

Example. • The matrix A =

3 −2 −1
0 0 1
2 −2 −1

 has characteristic polynomial

pA(t) = det

t− 3 2 1
0 t −1
−2 2 t+ 1

 = t det
(
t− 3 1
−2 t+ 1

)
+ det

(
t− 3 2
−2 2

)

= t(t2 − 2t− 1) + 2t− 2 = t3 − 2t2 + t− 2 = (t2 + 1)(t− 2)
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A is not diagonalizable over R, since 2 is the only real root of pA(t) and a2 = 1.
On the other hand, over C the matrix A has 3 distinct roots, each one with algebraic

multiplicity one, so over C the matrix A is diagonalizable (Corollary 4.15).

• The matrix A =

3 −1 −2
1 0 −1
0 1 1

 has characteristic polynomial

pA(t) = det

t− 3 1 2
−1 t 1
0 −1 t− 1

 = (t− 3) det
(
t 1
−1 t− 1

)
+ det

(
1 2
−1 t− 1

)

= (t− 3)(t2 − t+ 1) + (t+ 1) = t3 − 4t2 + 5t− 2 = (t− 1)2(t− 2)

Over R (and also over C) the matrix A has 2 roots: 1,2 with a1 = 2 and a2 = 1:
1 + 2 = 3 so Check 1 is passed.

We determine now the geometric multiplicities of the 2 eigenvalues: since 2 is a simple
eigenvalue, we know g2 = 1, so we proceed by computing g1 = dimV1:

V1 = ker(1I3−A) = ker

−2 1 2
−1 1 1
0 −1 0

 = ker

1 −1 −1
0 1 0
0 −2 0

 = ker

1 −1 −1
0 1 0
0 0 0

 = Span


1

0
1




so g1 = 1 < 2 = a1. Therefore, A is not diagonalizable neither over R nor over C.

• The matrix A =

4 −3 −3
1 0 −1
1 −1 0

 has characteristic polynomial

pA(t) = det

t− 4 3 3
−1 t 1
−1 1 t

 = − det
(

3 3
t 1

)
+ (−1)

(
t− 4 3
−1 1

)
+ t

(
t− 4 3
−1 t

)

= −(3− 3t)− (t− 1) + t(t2 − 4t+ 3) = t3 − 4t2 + 5t− 2 = (t− 1)2(t− 2)

The characteristic polynomial is the same of the previous example, so we proceed
directly to compute g1 = dimV1:

V1 = ker(1I3 − A) = ker

−3 3 3
−1 1 1
−1 1 1

 = ker

1 −1 −1
0 0 0
0 0 0

 = Span


1

0
1

 ,
1

1
0




so g1 = dimV1 = 2 = 2 = a1. Therefore, A is diagonalizable both over R and over C.
To determine P we are missing a basis of V2, so we determine it:

V2 = ker(2I3−A) = ker

−2 3 3
−1 2 1
−1 1 2

 = ker

 1 −1 −2
−1 2 1
−2 3 3

 = ker

1 −1 −2
0 1 −1
0 1 −1

 = Span


3

1
1




Let P :=

1 1 3
0 1 1
1 0 1

 and D :=

1 0 0
0 1 0
0 0 2

, then D = P−1AP .

56



4.4 Companion matrix
Question. Is any monic polynomial p(t) = tn + an−1t

n−1 + · · · + a1t + a0 ∈ K[t] the
characteristic polynomial of a matrix A ∈MK(n, n)?

Definition 4.16. The companion matrix of the monic polynomial p(t) = tn + an−1t
n−1 +

· · ·+ a1t+ a0 ∈ K[t] is the square matrix C(p) ∈MK(n, n) defined as

C(p) =



0 0 . . . 0 −a0
1 0 . . . 0 −a1
0 1 . . . 0 −a2
... ... . . . ... ...
0 0 . . . 1 −an−1


Example. • The companion matrix of t2 − 2 is ( 0 2

1 0 ).

• The companion matrix of t3 − 2t2 + 1 is
( 0 0 −1

1 0 0
0 1 2

)
.

Lemma 4.17. The characteristic polynomial of C(p) is p(t).

Proof. The characteristic polynomial C(p) is det(tIn − C(p)) =

det


t 0 ... 0 a0
−1 t ... 0 a1
0 −1 ... 0 a2
... ... ... ... ...
0 0 ... −1 t+an−1

 = (−1)n−1a0 det
 −1 t ... 0

0 −1 ... 0
... ... ... ...
0 0 ... −1


︸ ︷︷ ︸

=U

+t det


t 0 ... 0 a1
−1 t ... 0 a2
0 −1 ... 0 a3
... ... ... ... ...
0 0 ... −1 t+an−1


︸ ︷︷ ︸

=M

Since the determinant of the upper triangular matrix U is detU = (−1)n−1, we get
det(tIn−C(p)) = a0+t det(M). Expanding the determinant ofM ∈MK(n−1, n−1) along
the first row, we achieve det(tIn−C(p)) = a0+a1t+t2 det(N), where N ∈MK(n−2, n−2)
is obtained from C(p) by removing the first two rows and columns.

Repeating this process we achieve

det(tIn − C(p)) = a0 + a1t+ a2t
2 + · · ·+ an−3t

n−3 + tn−2 det
(
t an−2
−1 t+ an+1

)
= a0 + a1t+ · · ·+ tn−2(t2 + tan+1 + an+2) = p(t)

Example. •We would like to find a 3×3 matrix M whose characteristic polynomial has
three real roots, but only one is rational, e.g. p(t) = (t − 1)(t2 − 2) = t3 − t2 − 2t + 2.

Pick M = C(p) =

0 0 −2
1 0 2
0 1 1


• We would like to find a 3 × 3 matrix N whose characteristic polynomial has only

one real root, e.g. q(t) = (t+ 3)(t2 + 1) = t3 + 3t2 + t+ 3: pick N = C(q) =

0 0 −3
1 0 −1
0 1 −3
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Chapter 5

Real Euclidian space

In this chapter we discuss geometric properties of Rn related to its euclidean structure.
We work over the real field K = R and endow Rn with a “product of two vectors”:
the standard1 scalar product. In particular, we introduce orthogonality and orthogonal
projections, and discuss how these interact with the diagonalization problem.

Definition 5.1. The (standard1) scalar product on Rn is

〈·, ·〉 : Rn × Rn → R , 〈v, w〉 =
〈

v1
...
vn

 ,

w1
...
wn


〉

= v1w1 + · · ·+ vnwn .

The scalar product satisfies the following properties, which are easy to verify.

Properties. The scalar product is
• symmetric: 〈v, w〉 = 〈w, v〉 holds ∀v, w ∈ Rn;
• bilinear (= linear in both entries): 〈v+λu,w〉 = 〈v, w〉+λ〈u,w〉, and 〈v, λu+w〉 =
〈v, w〉+ λ〈v, u〉 hold ∀v, w, u ∈ Rn, λ ∈ R;

• positive definite: 〈v, v〉 ≥ 0 holds ∀v ∈ Rn, and 〈v, v〉 = 0⇔ v = 0;
• non-degenerate: 〈v, w〉 = 0 for all w ∈ Rn if and only if v = 0.

Example. For example (n = 3):
〈1

2
3

 ,
 0

1
−1

〉 = 0 · 1 + 2 · 1 + 3 · (−1) = −1.

〈1
2
3

 ,
1

2
3

〉 = 12 + 22 + 32 = 14,
〈1

2
3

 ,−2

 0
1
−1

+

1
2
3

〉 = −2(−1) + 14 = 16

Definition 5.2. Let v ∈ Rn. The norm of v is ||v|| =
√
〈v, v〉.

A vector v ∈ Rn is a unit vector if ||v|| = 1.

Note that, if v ∈ Rn, v 6= 0, then v

||v||
is a unit vector.

1It is also called canonical or euclidean scalar product, or dot product.
Be aware that Rn can be endowed with other scalar products, which will not be discussed in this course.
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Example. For example (n = 3): ||(1, 2, 3)T || =
√

14 so ( 1√
14 ,

2√
14 ,

3√
14)T is a unit vector.

Properties. Let v ∈ Rn. Then
• ||v|| ≥ 0 and ||v|| = 0⇔ v = 0;
• ||λ · v|| = |λ| · ||v|| for all λ ∈ R;
• ||v + w|| ≤ ||v||+ ||w|| (Triangular inequality)
The first 2 properties follow from the definition of norm. The third one generalize the

(well known) fact that in a triangle the sum of the length of two sides always exceeds the
length of the third side. This property can be proven by using the following important
inequality.
Theorem 5.3 (Cauchy-Schwartz inequality). Consider the Euclidean space Rn endowed
with the standard scalar product 〈·, ·〉. Then, for every v, w ∈ Rn it holds

|〈v, w〉| ≤ ||v|| · ||w|| (5.1)
Moreover, in (5.1) the equality holds if and only if v and w are linearly dependent.
Proof. If w = 0, then |〈v, w〉| = 0 ≤ ||v|| · ||w||; so let us assume w 6= 0.

The vectors v, w are linearly dependent if and only if there exists λ ∈ R such that
v = λw, i.e. ||v− λw|| = 0. To use this observation, we introduce the function g : R→ R
defined via

g(t) = ||v − tw|| = 〈v − tw, v − tw〉 = 〈v, v〉 − 2t〈v, w〉+ t2〈w,w〉

So, g(t) = t2||w||2 − 2t〈v, w〉 + ||v||2 is a polynomial of degree 2 and g(t) ≥ 0 for all
t ∈ R; moreover, there exists λ ∈ R such that g(λ) = 0 if and only if v and w are linearly
dependent. Therefore, the discriminant of g

∆ = 4〈v, w〉2 − 4||w||2||v||2 ≤ 0⇔ 〈v, w〉2 ≤ ||w||2||v||2

and 〈v, w〉2 ≤ ||w||2||v||2 if and only if v and w are linearly dependent.
Since ||w||||v|| ≥ 0, the statement follows by taking the square root of both sides.

Let v, w ∈ Rn be non-zero vectors: ||v||, ||w|| > 0. By the Cauchy-Schwartz inequality
we get:

−1 ≤ 〈v, w〉
||w||||v||

≤ 1

So we can define the “angle” between v, w as follows:
Definition 5.4. Let v, w ∈ Rn be non-zero vectors: ||v||, ||w|| > 0. The angle between v
and w is the unique θ ∈ [0, π] such that

cos θ = 〈v, w〉
||w|| · ||v||

.

Remark. Form this definition, we deduce 〈v, w〉 = ||v|| · ||w|| · cos θ, which coincides with
the definition of scalar product you have probably seen in physics.
Example. The angle between v = (1, 2, 3)T and w = (0, 1,−1)T is

arccos
(
−1√
14
√

2

)
= 1.76...

The angle between u1 = (2, 1)T and u2 = (1,−2)T is π
2 , indeed 〈u1, u2〉 = 0.

59



5.1 Orthogonality
Definition 5.5. Two vectors v, w ∈ Rn are orthogonal if 〈v, w〉 = 0 (one writes v ⊥ w).
Two vector subspaces V,W / Rn are orthogonal if 〈v, w〉 = 0 for all v ∈ V and w ∈ W .

Remark. The zero vector is orthogonal to any other vector: 0 ⊥ v for all v ∈ Rn

Definition 5.6. Let H / Rn be a vector subspace of Rn and let B = {b1, . . . , bp} be a
basis of H.
B is an orthogonal basis of H if 〈bi, bj〉 = 0 for all i 6= j.
B is an orthonormal basis of H if 〈bi, bj〉 = 0 for all i 6= j and ||bi|| = 1 for all i.

Example. The canonical basis E of Rn is an orthonormal basis of Rn.
The basis {(1, 1)T , (1,−1)T} of R2 is an orthogonal basis, but it is not an orthonor-

mal basis. To obtain an orthonormal basis, we have to rescale each vector: ||(1, 1)|| =
||(1,−1)|| =

√
2, so

{(
1√
2 ,

1√
2

)T
,
(

1√
2 ,−

1√
2

)T}
is an orthonormal basis of R2.

Theorem 5.7. Let H / Rn be a vector subspace of Rn and let BH = {b1, . . . , bp} be an
orthogonal basis of H. Then for each v ∈ H we have

v = 〈v, b1〉
||b1||2

b1 + · · · 〈v, bp〉
||bp||2

bp

If BH = {b1, . . . , bp} is an orthonormal basis of H, then v = 〈v, b1〉b1 + · · · 〈v, bp〉bp.

Proof. BH is a basis of H, so for each v ∈ H there are scalars λj ∈ R such that v =
λ1b1 + . . .+ λpbp. By computing 〈v, bj〉 we get

〈v, bj〉 = 〈
p∑
i=1

λibi, bj〉 =
p∑
i=1

λi〈bi, bj〉 = λj〈bj, bj〉 =⇒ λj = 〈v, bj〉
||bj||2

Definition 5.8. The coefficient λj = 〈v, bj〉
||bj||2

is the Fourier coefficients of v with respect
to the vector bj.

Example. The basis {(1,−2)T , (2, 1)T} is an orthogonal basis of R2, and v = (4, 3)T
decomposes as:(

4
3

)
= 〈(4, 3)T , (1,−2)T 〉

||(1,−2)T ||2

(
1
−2

)
+ 〈(4, 3)T , (2, 1)T 〉

||(2, 1)T ||2

(
2
1

)
= −2

5

(
1
−2

)
+ 11

5

(
2
1

)
.

We see now a process to construct an orthogonal (orthonormal) basis of a vector
subspace H / Rn by starting from a given basis B = {b1, . . . , bp} of H.

5.1.1 Gram-Schmidt process
Let H / Rn be a vector subspace of Rn and let B = {b1, . . . , bp} be a basis of H. We
construct recursively an orthogonal basis C of H, via the Gram-Schmidt process:

• c1 := b1;
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• c2 := b2 −
〈b2, c1〉
||c1||2

c1

• c3 := b3 −
〈b3, c1〉
||c1||2

c1 −
〈b3, c2〉
||c2||2

c2

• . . . cj := bj −
∑j−1
k=1
〈bj, ck〉
||ck||2

ck

Finally, to determine an orthonormal basis D of H we normalize each cj: dj := cj
||cj||

.
Moreover, at each step we do not modify the span of the first j vectors:

Lemma 5.9. For all j = 1, . . . , p it holds:

Span(b1, . . . , bj) = Span(c1, . . . , cj) = Span(d1, . . . , dj) .

Proof. By induction, we assume Span(b1, . . . , bj−1) = Span(c1, . . . , cj−1) and it follows:

Span(c1, . . . , cj−1, cj) Span(c1, . . . , cj−1, bj −
j−1∑
k=1

〈bj, ck〉
||ck||2

ck) = Span(c1, . . . , cj−1, bj)

= Span(b1, . . . , bj−1, bj)

Let us now verify that the basis C obtained via the Gram-Schmidt process is indeed
an orthogonal basis. We do it by assuming at each step that c1, . . . , cj−1 are pairwise
orthogonal, and by showing that the “new vector” cj is orthogonal to the previous ones:

〈ci, cj〉 = 〈ci, bj−
j−1∑
k=1

〈bj, ck〉
||ck||2

ck〉 = 〈ci, bj〉−
j−1∑
k=1

〈bj, ck〉
||ck||2

〈ci, ck〉 = 〈ci, bj〉−
〈bj, ci〉
||ci||2

〈ci, ci〉 = 0

Remark. Every orthogonal (respectively orthonormal) basis of H can be completed to a
orthogonal (respectively orthonormal) basis of Rn.

Example. In R4 consider the basis
{
b1 =

( 0
1
0
1

)
, b2 =

( 2
1
0
1

)
, b3 =

( −1
0
0
1

)
, b4 =

( 0
0
1
0

)}
. We

apply the Gram-Schmidt process to construct an orthogonal basis C of R4:

c1 = b1 =
( 0

1
0
1

)
,

c2 = b2 −
〈b2, c1〉
||c1||2

c1 =
( 2

1
0
1

)
− 2

2

( 0
1
0
1

)
=
( 2

0
0
0

)

c3 = b3 −
〈b3, c1〉
||c1||2

c1 −
〈b3, c2〉
||c2||2

c2 =
( −1

0
0
1

)
− 1

2

( 0
1
0
1

)
− −2

4

( 2
0
0
0

)
=
( 0
−1/2

0
1/2

)

c4 = b4 −
〈b4, c1〉
||c1||2

c1 −
〈b4, c2〉
||c2||2

c2 −
〈b4, c3〉
||c3||2

c3 = b4 − 0c1 − 0c2 − 0c3 =
( 0

0
1
0

)

5.1.2 Orthogonal projections

Let us analyse the geometric meaning of the step c2 := b2 −
〈b2, c1〉
||c1||2

c1.
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Let θ be the angle between c1 and b2, so that

〈b2, c1〉 = ||b2|| · ||c1|| · cos θ =⇒ c2 := b2 −
〈b2, c1〉
||c1||2

c1 = b2 −
c1

||c1||
· ||b2|| · cos θ︸ ︷︷ ︸

w

The vector w is a multiple of c1 of length ||b2|| · cos θ, so we are removing from b2 its
component lying in the direction of c1 and we are left with a vector orthogonal to c1.
Geometric idea: w is the “orthogonal projection” of b2 onto the direction of c1, and so c2
is a vector orthogonal to c1. This happens at each step, so let us formalize it.

Definition 5.10. Let H /Rn be a vector subspace of Rn and let BH = {b1, . . . , bp} be an
orthogonal basis of H. The orthogonal projection onto H is the linear map:

πH : Rn −→ Rn

v 7→
p∑

k=1

〈v, bk〉
||bk||2

bk

Remark. i) At first glance it may seem that the map depends on the choice of the of the
orthogonal basis BH of H, but Proposition 5.12 shows that the output does not depend
on this choice.

ii) πH(u) = u⇔ u ∈ H.
iii) πH(v) = 0⇔ v ⊥ bj∀j ⇔ v ⊥ h∀h ∈ H.
iv) Each step of the Gram-Schmidt process can be rephrased as cj := bj − πHj(bj),

where Hj = Span(c1, . . . , cj−1).

Example. Let v = (2, 3, 0)T ∈ R3 and let H = Span((1, 0, 1)T , (0, 1, 0)T ) ⊆ R3.
(1, 0, 1)T and (0, 1, 0)T are orthogonal, so the orthogonal projection of v onto H is:

πH(v) = 〈(2, 3, 0)T , (1, 0, 1)T 〉
||(1, 0, 1)T ||2

1
0
1

+ 〈(2, 3, 0)T , (0, 1, 0)T 〉
||(0, 1, 0)T ||2

0
1
0

 =

1
3
1


Definition 5.11. Let H /Rn be a vector subspace of Rn. The orthogonal complement of
H is

H⊥ = {v ∈ Rn | 〈v, u〉 = 0∀u ∈ H}

Note that H⊥ = ker(πH); and if B = {b1, . . . , bp} is a basis of H, to check if v ∈ H⊥
it is enough to verify 〈v, bj〉 = 0 for all j = 1, . . . , p.

Proposition 5.12. Let H / Rn be a vector subspace of Rn, then

H ⊕H⊥ = Rn

In particular, dimH + dimH⊥ = n.
Moreover, Pythagoras’ Theorem holds: by writing v ∈ Rn as v = u + w, u ∈ H,

w ∈ H⊥, we get ||v||2 = ||u||2 + ||w||2.
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Proof. Let u ∈ H ∩H⊥, then 〈u, u〉 = 0, so u = 0, so the sum H + H⊥ is direct, and we
have to show that it is the whole Rn.

Let v ∈ Rn, then v = πH(v) + (v − πH(v)) and πH(v) ∈ H, while (v − πH(v)) ∈ H⊥,
indeed πH(v − πH(v) = πH(v)− πH(πH(v)) = πH(v)− πH(v) = 0

The last claim is a simple computation using 〈u,w〉 = 0: ||v||2 = ||u + w||2 = 〈u +
w, u+ w〉 = 〈u, u〉+ 2〈u,w〉+ 〈w,w〉 = ||u||2 + ||w||2

Remark. i) Because of the decomposition Rn = H⊕H⊥ we have that v = πH(v)+πH⊥(v),
in other words: v − πH(v) = πH⊥(v).

ii) (H⊥)⊥ = H

Example. In R3 consider H = Span((1, 2, 3)T ), then

πH((x, y, z)T ) = 〈(x, y, z)T , (1, 2, 3)T 〉
||(1, 2, 3)T ||2

1
2
3

 = x+ 2y + 3z
14

1
2
3


and H⊥ = {(x, y, z)T ∈ R3 | x+ 2y + 3z = 0}.

In R3 consider K = {(x, y, z)T ∈ R3 | x+ 2y + 3z = 0, 4x+ 5y + 6z = 0}. So a vector
in K is orthogonal to (1, 2, 3)T and to (4, 5, 6)T , hence K⊥ = Span((1, 2, 3)T , (4, 5, 6)T ).

Remark. If H = Sol(A|0) (cartesian equations), then it is easy to have parametric equa-
tions of H⊥, indeed H⊥ = Row(A) = Span(RT

1 , . . . , R
T
m), where Ri are the rows of A.

Conversely, if H = Span(v1, . . . , vp) (parametric equations), then it is easy to have
cartesian equations of H⊥, indeed H⊥ = Sol(M |0), where M is the matrix having
vT1 , . . . , v

T
p as rows.

5.2 Orthogonality and diagonalization
Definition 5.13. Let A ∈MR(n, n) be a square matrix.

A is symmetric if AT = A.
A is orthogonal if AT = A−1 (in particular, A is invertible).
A is orthogonally diagonalizable if there exists an orthogonal basis of Rn made of

eigenvectors of A.

Let B = {b1, . . . , bn} be an orthogonal basis of Rn made of eigenvectors of A and
consider the corresponding orthonormal basis C = {c1 = b1

||b1|| , . . . , cn = bn
||bn||}.

The basis C is a basis of eigenvectors for A, so by the first diagonalization theorem
P−1AP = D is a diagonal matrix, where P = MC

E(idRn): its columns are the vectors
c1, . . . , cn, and it holds

(P T · P )i,j = cTi · cj = 〈ci, cj〉 =
{

1 if i = j
0 if i 6= j

=⇒ P T · P = In

In other words P is an orthogonal matrix.
Remark. A matrix P ∈ MR(n, n) is orthogonal if and only if its columns (or rows) form
an orthonormal basis of Rn.
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Reformulating: A ∈ MR(n, n) orthogonally diagonalizable means that there exists
matrices P,D ∈ MR(n, n), P orthogonal, D invertible such that D = P−1AP = P TAP ,
i.e. A = PDP T . Considering the transpose of both sides, we get

AT = (PDP T )T = (P T )TDTP T = PDP T = A

so an orthogonally diagonalizable matrix is symmetric. The converse holds true as well:

Theorem 5.14 (Spectral theorem). Let A ∈MR(n, n) be a square matrix.
A is orthogonally diagonalizable if and only if A is symmetric.

The proof of this result is out of the scope of these notes, but we can understand how
to construct P and D starting from a symmetric matrix A.

The idea is to use the “standard” diagonalization process (see page 55) and adapt it.
Input A symmetric square matrix A ∈MR(n, n)
Step 1 Determine the characteristic polynomial pA(t) = det(tIn−A) of and the eigenvalues

λ1, . . . , λr of A.
Step 2 For each λi find a basis Bλi of the eigenspace Vλi .

Note that Check 1 and 2 are not necessary, since A is diagonalizable by the spectral
theorem: so we have to find n real roots (counted with multiplicity) and each root has
geometric multiplicity equal to the algebraic one.

So we got an intermedite output: B = Bλ1 ∪ . . . ∪ Bλr is a basis of Rn made of
eigenvectors of A, but in general it is not orthogonal. Nevertheless, the orthogonality
between eigenvector of distinct eigenspaces is guaranteed by the following lemma:

Lemma 5.15. Let v, w be eigenvectors of the symmetric matrix A ∈MR(n, n) belonging
to distinct eigenspaces: v ∈ Vλ, w ∈ Vµ with λ 6= µ. Then 〈v, w〉 = 0.

Proof. Let us consider 〈v,Aw〉 = 〈v, µw〉 = µ〈v, w〉. On the other hand 〈v, Aw〉 =
vT · (A · w) A=AT= vT · AT · w = (A · v)T · w = 〈Av,w〉 = 〈λv, w〉 = λ〈v, w〉.

Thus, (λ− µ)〈v, w〉 = 0, but λ 6= µ, so 〈v, w〉 = 0.

We need the orthogonality between eigenvectors of the same eigenspaece: we use the
Gram-Schmidt process:

Step 3 Use the Gram-Schmidt process on each basis Bλi , to get an orthonormal basis Bonλi
of the eigenspace Vλi .

Output Bon = Bonλ1 ∪ . . . ∪ B
on
λr is an orthonormal basis of Rn made of eigenvectors of A. By

taking P having for columns the vectors of Bon, we get that P−1AP = P TAP is a
diagonal matrix

Example. a) The matrix A =

1 3 0
3 1 0
0 0 −2

 ∈MR(3, 3) is symmetric, so it is orthogonally

diagonalizable. Let us determine an orthogonal basis of R3 made eigenvectors for A. The
characteristic polynomial of A is

pA(t) = det

t− 1 −3 0
−3 t− 1 0
0 0 t+ 2

 = (t+2)((t−1)2−9) = (t+2)(t2−2t−8) = (t+2)2(t−4)
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Let us now determine a basis for both eigenspaces:

V4 = ker

 3 −3 0
−3 3 0
0 0 6

 = ker

1 −1 0
0 0 0
0 0 1

 = Span


1

1
0




V−2 = ker

−3 −3 0
−3 −3 0
0 0 0

 = ker

1 1 0
0 0 0
0 0 0

 = Span


 1
−1
0

 ,
0

0
1




Since
( 1
−1
0

)
,
( 0

0
1

)
are orthogonal, to get an orthonormal basis we just have to normalize

the 3 vectors: 


1√
2

1√
2

0

 ,


1√
2

− 1√
2

0

 ,
0

0
1




is an orthonormal basis of R3 made of eigenvectors for A and

P TAP =

4 0 0
0 −2 0
0 0 −2

 where P =


1√
2

1√
2 0

1√
2 −

1√
2 0

0 0 1



b) The matrix A =

 2 −1 −1
−1 2 −1
−1 −1 2

 ∈ MR(3, 3) is symmetric, so it is orthogonally

diagonalizable. Its characteristic polynomial is

pA(t) = det

t− 2 1 1
1 t− 2 1
1 1 t− 2

 = (t+2)((t−2)2−1)−(t−2−1)+(1−(t−2)) = t3−6t2+9t = t(t−3)2

Let us now determine a basis for both eigenspaces:

V0 = ker

−2 1 1
1 −2 1
1 1 −2

 = ker

1 1 −2
0 −3 3
0 3 −3

 = ker

1 1 −2
0 1 −1
0 0 0

 = Span


1

1
1




V3 = ker

1 1 1
1 1 1
1 1 1

 = ker

1 1 1
0 0 0
0 0 0

 = Span


 1
−1
0

 ,
 1

0
−1




Since 〈
( 1
−1
0

)
,
( 1

0
−1

)
〉 = 1, this two vectors are not orthogonal, so we apply the Gram-

Schmidt process to get an orthogonal basis of V3:

c1 :=

 1
−1
0

 c2 :=

 1
0
−1

− 〈(1, 0,−1)T , (1,−1, 0)T 〉
||(1,−1, 0)T ||2

 1
−1
0

 =


1
2
1
2
−1
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After normalizing, we get an orthonormal basis of R3 made eigenvectors for A:


1√
3

1√
3

1√
3

 ,


1√
2

− 1√
2

0

 ,


1√
6

1√
6√
2√
3




and moreover it holds

P TAP =

0 0 0
0 3 0
0 0 3

 where P =


1√
3

1√
2

1√
6

1√
3 −

1√
2

1√
6

1√
3 0

√
2√
3



66



Chapter 6

Linear analytic geometry

In the previous chapters we have focused on vector spaces and vector subspaces. In
particular we have seen that any vector subspace of Rn can be written as Sol(A|0) for
some A ∈MR(m,n).

In this final chapter we focus on the 3-dimensional space R3 (n = 3), but we consider
a more general setting, namely solution sets of solvable linear systems Sol(A|b), where
A ∈MR(m, 3): the affine subspaces. We will use the euclidean structure of R3 to discuss
orthogonality, reciprocal positions and distances between affine subsets of R3.

6.1 Cross product
We begin by defining another type of product: the cross product (or vector product). This
is defined only on R3, and it will be useful in the next sections.

Definition 6.1. Let v, w ∈ R3. Their cross product (or vector product) is the vector

v × w = ||v|| · ||w|| · sin(θ) · n

where θ is the angle1 between v and w, and n is the unit vector orthogonal to v and w
and determined by the right-hand rule (v: thumb, w: index finger, n: middle finger).

The cartesian coordinates of R3 defined in the Introduction are naturally identified
with the canonical basis of R3: −→i = e1, −→j = e2 and −→k = e3.

Example. −→i ×−→j = −→k ; −→
j ×
−→
k = −→i ; −→

i ×
−→
k = −−→j .

There is an explicit formula to compute the cross product of two vectors as “mixed
determinant” (i.e. the matrix contains both vectors and scalars).
Let v = (v1, v2, v3)T , w = (w1, w2, w3)T ∈ R3 then

v × w = det


−→
i v1 w1−→
j v2 w2−→
k v3 w3

 =
(

det
(
v2 w2
v3 w3

)
,− det

(
v1 w1
v3 w3

)
, det

(
v1 w1
v2 w2

))T
(6.1)

where the first “determinant” is expanded only along the first column.
1By definition of angle between vectors θ ∈ [0, π], so sin θ ≥ 0.
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Example. 1
1
0

×
0

2
2

 = det


−→
i 1 0
−→
j 1 2
−→
k 0 2

 =

 2− 0
−(2− 0)

2− 0

 =

 2
−2
2


1

2
3

×
4

5
6

 = det


−→
i 1 4
−→
j 2 5
−→
k 3 6

 =

 12− 15
−(6− 12)

5− 8

 =

−3
6
−3


Properties. Let v, w ∈ R3, then

1. v × w is orthogonal to both v and w, so to the vector subspace generated by them.
2. ||v × w|| = ||v|| · ||w|| · sin(θ) is the area of the parallelogram of vertices 0, v, w,

v + w.
3. v × w = 0 if and only if v, w are linearly dependent.
4. The map × : R3×R3 → R3 is bilinear (= linear in both entries), and v×w = −w×v.

Remark. i) The cross product is not associative; for example

e1 × (e2 × e2) = e1 × 0 = 0 , but (e1 × e2)× e2 = e3 × e2 = −e1 .

ii) Let u = (u1, u2, u3)T , v = (v1, v2, v3)T , w = (w1, w2, w3)T ∈ R3.
From the definition of scalar and cross product it follows:

〈u, v × w〉 = det

u1 v1 w1
u2 v2 w2
u3 v3 w3

 .

6.2 Affine subspaces of R3

Definition 6.2. Let Ax = b be a solvable linear system, where A ∈ MR(m,n) and
b ∈ Rm. The solution set S := Sol(A|b) is an affine subspace of Rn.

The corresponding vector subspace S0 := Sol(A|0) is called the direction of S.

Remark. Let Ax = b be a solvable linear system, and let P ∈ Sol(A|b) be a solution. Recall
that by Theorem 1.13, it holds Sol(A|b) = P + Sol(A|0); in particular, if P1, P2 ∈ Sol(A|b)
then P1 − P2 ∈ Sol(A|0).

From now on we restrict to affine subspaces of R3, namely we consider A ∈MR(m, 3)
and b ∈ Rm, defining a solvable linear system Ax = b, in particular rk(A|b) = rk(A) ≤ 3.

Note that if m > rk(A), then we can apply the the Gauss algorithm to reduce (A|b)
into echelon form, and discard the m − rk(A) equations corresponding to the zero rows.
Thus, we can always assume m = rk(A) = rk(A|b) ≤ 3.

Case m = 0. (A|b) is the zero matrix, so S = R3; this case is not of much interest and we will
not discuss it further.
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Case m = 1. Ax = b consists of a single equation:

S = {(x, y, z)T ∈ R3 | αx+ βy + γz = δ},

and S0 is a vector subspace of dimension 3− 1 = 2: S is a plane.
Case m = 2. Ax = b consists of two (independent) equations:

S = {(x, y, z)T ∈ R3 |
{
α1x+ β1y + γ1z = δ1
α2x+ β2y + γ2z = δ2

},

and S0 is a vector subspace of dimension 3− 2 = 1: S is a line.
Case m = 3. Ax = b consists of three (independent) equations, so S0 is a vector subspace of

dimension 3− 3 = 0: S0 = {0R3}: S is a point.

6.2.1 Cartesian and parametric equations
In the previous section we defined an affine subspace as the solution set of a solvable linear
system Ax = b, A ∈MR(m, 3) and b ∈ Rm; these are cartesian equations.

As for vector subspaces (see Section 2.5), by solving the linear system Ax = b, we can
describe the affine subspace S := Sol(A|b) more explicitly through parametric equations:
by Theorem 1.13 (see also Theorem 1.11 (Rouché-Capelli)) it holds

S = Sol(A|b) = P + Sol(A|0) = P + Span(w1, . . . , w3−m)

where P = (xP , yP , zP )T ∈ R3 is a solution of Ax = b and {w1, . . . , w3−m} is a basis of
Sol(A|0). More explicitly:

if m = 3, S is a point: S =
{(

Px
Py
Pz

)}
;

if m = 2, S is a line : S =
{(

Px
Py
Pz

)
+ t

( wx
wy
wz

)
| t ∈ R

}
=
(
Px
Py
Pz

)
+
( wx
wy
wz

)
R;

if m = 1, S is a plane: S =
{(

Px
Py
Pz

)
+ t1

(
w1,x
w1,y
w1,z

)
+ t2

(
w2,x
w2,y
w2,z

)
| t1, t2 ∈ R

}
=
(
Px
Py
Pz

)
+
(
w1,x
w1,y
w1,z

)
R +(

w2,x
w2,y
w2,z

)
R.

Given parametric equations T = {P +w1t1 + · · ·+wrtr} = P + Span(w1, . . . , wr), we
would like to recover cartesian equations.

Interpreting W = Span(w1, . . . , wr) / R3 as W = Col(M), (where M ∈ MR(3, r) has
w1, . . . , wr as columns), we see that a point Q = (x, y, z)T ∈ R3 belongs to T if and only
if P − Q ∈ Span(w1, . . . , wr) = W , if and only if rk(M) = rk(M |P − Q). By reducing
(M |P −Q) into echelon form and imposing this condition we obtain cartesian equations
of T , as in the following examples.

Example. • Let T =
(

1
−2
−3

)
+
( 1

0
1

)
R +

( 0
1
1

)
R, then (x, y, z)T ∈ T if and only if the linear

system  1 0 x− 1
0 1 y + 2
1 1 z + 3
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is solvable. Using elementary row operations the linear system reduces to 1 0 x− 1
0 1 y + 2
0 0 z + 3− x+ 1− y − 2


which is solvable if and only if (x, y, z)T is a solution of x+ y − z = 2: this is a cartesian
equations of T .
• Let T =

( 0
4
−3

)
+
( 1

2
3

)
R, then (x, y, z)T ∈ T if and only if the following linear system

is solvable 1 x
2 y − 4
3 z + 3

 −→
 1 x

0 y − 4− 2x
0 z + 3− 3x

 T =
{

(x, y, z)T ∈ R3 |
{

2x− y = −4
3x− z = 3

}

Line through two points & plane through three points

A line is uniquely determined by 2 (distinct) points P,Q on it. Indeed, Q−P determines
the direction of the line and the point P (or Q) gives us the application point: parametric
equations of the line passing through P and Q are: P + (Q− P )t, t ∈ R.

Example. The line l ⊂ R3 passing through P =
( 1

2
3

)
and Q =

( 4
5
6

)
is

l =

1
2
3

+

3
3
3

R −→ l =
{

(x, y, z)T ∈ R3 |
{
x− y = −1
x− z = −2

}

A plane is uniquely determined by 3 non-collinear points (i.e. not on the same line)
P,Q,R on it. Indeed, Q − P and R − P determine the direction of the plane and the
point P (or Q or R) gives us the application point: parametric equations of the plane
passing through P , Q and R are: P + (Q− P )t1 + (R− P )t2, t1, t2 ∈ R.

Example. The line π ⊂ R3 passing through P =
( 1

1
0

)
, Q =

( 1
−2
1

)
and R =

( 2
−1
3

)
is

π =

1
1
0

+

 0
−3
1

R +

 1
−2
3

R −→ π = {(x, y, z)T ∈ R3 | 7x− y − 3z = 6}

Example. The points P =
( 1

2
3

)
, Q =

( 4
5
6

)
and R =

( 7
8
9

)
are collinear, indeed by consid-

ering P + (Q− P )t1 + (R− P )t2, t1, t2 ∈ R we get1
2
3

+

3
3
3

R +

6
6
6

R =

1
2
3

+

1
1
1

R
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6.3 Reciprocal position of affine subspaces
To simplify the notation, from now on we denote by (xP , yP , zP )T the coordinates of the
point P ∈ R3.

Point - point

Let P1 = Sol(A1|b1) and P2 = Sol(A2|b2) be two points, then they are either equal (the
linear systems A1x = b1 and A2x = b2 are equivalent), or they are different.

Point - line

Let P = (xP , yP , zP )T be a point and l = Sol(A|b) be a line, then either P belongs to l
(i.e. P is a solution of Ax = b) or not.

Point - plane

Let P = (xP , yP , zP )T be a point and π = {(x, y, z)T ∈ R3 | αx+βy+γz = δ} be a plane.
Then either P belongs to π (i.e. αxP + βyP + γzP = δ) or not.

Line - line

Let l1 = Sol(A1|b1) and l2 = Sol(A2|b2) be two lines. The first thing to check is whether
they meet or not, so we need to understand if the linear system

(
A1
A2

)
·

xy
z

 =
(
b1
b2

)

has solutions or not. The matrix A :=
(
A1
A2

)
∈ MR(4, 3) has rank rk(A) = 2 or 3,

while the augmented matrix (A|b) =
(
A1 b1
A2 b2

)
∈MR(4, 4) has either rk(A|b) = rk(A) or

rk(A|b) = rk(A) + 1; there are 4 possibilities for the reciprocal position of l1 and l2.

Case 1: rk(A) = rk(A|b) = 2: this means that the linear systems A1x = b1 and A2x = b2
are equivalent, so l1 = l2: they are coincident lines.

Case 2: rk(A) = 2 and rk(A|b) = 3: by the Rouché-Capelli Theorem (1.11) the two lines
do not have common points, but same direction (dim Sol(A|0) = 1 = dim Sol(A1|0) =
dim Sol(A2|0) implies Sol(A1|0) = Sol(A2|0)) so l1 and l2 are parallel lines.

More generally we have:

Definition 6.3. Let S1 = Sol(A1|b1) and S2 = Sol(A2|b2) be two affine subspace, with
corresponding directions S1,0 = Sol(A1|0) and S2,0 = Sol(A2|0).

The affine subspaces S1 and S2 are parallel if: i) S1 and S2 have no common points,
and ii) S1,0 ⊂ S2,0 or S2,0 ⊂ S1,0.

Example. i) The lines
( 1

2
3

)
+
( 1

1
1

)
R and

( 4
−1
7

)
+
(
−2
−2
−2

)
R are parallel.

ii) The line
( 1

2
3

)
+
( 1

1
1

)
R and the plane

( 4
−1
7

)
+
( 2

1
0

)
R +

( 1
0
−1

)
R are parallel.
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Case 3: rk(A) = 3 = rk(A|b): by the Rouché-Capelli Theorem (1.11) the two lines have
a single common point: l1 and l2 are incident lines.

Case 4: rk(A) = 3 and rk(A|b) = 4: by the Rouché-Capelli Theorem (1.11) the two lines
do not have common points and different directions Sol(A1|0) 6= Sol(A2|0): l1 and l2 are
skew lines.

Example. •
{
x− y = −1
x− z = −2 and

{
−2x+ y + z = 3
y − z = −1 are coincident lines, indeed

rk


1 −1 0 −1
1 0 −1 −2
−2 1 1 3
0 1 −1 −1

 = rk


1 −1 0 −1
0 1 −1 −1
0 −1 1 1
0 1 −1 −1

 = 2

•
{
x− y = −1
x− z = −2 and

{
−2x+ y + z = 4
y − z = −2 are parallel lines, indeed


1 −1 0 −1
1 0 −1 −2
−2 1 1 4
0 1 −1 −2

→


1 −1 0 −1
0 1 −1 −1
0 −1 1 2
0 1 −1 −2

→


1 −1 0 −1
0 1 −1 −1
0 0 0 1
0 0 0 0



• l1 =
{
x− y = −1
x− z = −2 and l2 =

(
0
−1
−2

)
+
( 1

2
3

)
R are incident lines, indeed by plugging

in the equations of l2 into those of l1 we get{
(0 + t)− (−1 + 2t) = −1
(0 + t)− (−2 + 3t) = −2 ↔

{
−t = −2
−2t = −4 ↔ t = 2

a single solution. This means that the lines l1 and l2 have a single common point (2, 3, 4)T
(i.e. they are incident lines).

• l1 =
{
x− y = −1
x− z = −2 and l2 =

( 0
4
−3

)
+
( 1

2
3

)
R are skew lines, indeed by plugging in

the equations of l2 into those of l1 we get{
(0 + t)− (4 + 2t) = −1
(0 + t)− (−3 + 3t) = −2 ↔

{
−t = −5
−2t = 1

which has no solutions, i.e. l1 and l2 have no common points. Moreover, their directions
are different, indeed l1,0 =

( 1
1
1

)
R does not contain

( 1
2
3

)
.

Remark. Having parametric equations of the lines l1 = P1 + v1R and l2 = P2 + v2R, we
can read the four cases as follows:
Case 1, coincident lines: rk(v1|v2) = 1 = rk(v1|v2|P2 − P1).
Case 2, parallel lines: rk(v1|v2), rk(v1|v2|P2 − P1) = 2.
Case 3, incident lines: rk(v1|v2) = 2 = rk(v1|v2|P2 − P1).
Case 4, skew lines: rk(v1|v2) = 2 rk(v1|v2|P2 − P1) = 3.
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Indeed, rk(v1|v2) = 1 means that the lines have the same direction, while rk(v1|v2) = 2
means that the lines have different directions.

And if, by adding the column P2−P1, the rank increases, it means that the vector P2−
P1 is independent from {v1, v2}, so that the translation of v1R by P1 and the translation
of v2R by P2 separate the lines.

Example. • The lines
( 1

2
3

)
+
( 1

1
1

)
R and

( 4
−1
7

)
+
(
−2
−2
−2

)
R have the same direction, so they

are either coincident or parallel. They are parellel since
( 4
−1
7

)
−
( 1

2
3

)
=
( 3
−3
4

)
is not a

multiple of
( 1

1
1

)
.

• The lines
( 1
−1
2

)
+
( 1

2
1

)
R and

( 1
2
3

)
+
( 2

1
1

)
R have different directions, so they are either

incident or skew. Since
( 1

2
3

)
−
( 1
−1
2

)
=
( 0

3
1

)
∈ Span

(( 1
2
1

)
,
( 2

1
1

))
, the lines are incident.

Line - plane

Let l = Sol(A1|b1) be a line and π = Sol(A2|b2) be a plane.
The matrix A :=

(
A1
A2

)
∈MR(3, 3) has rank rk(A) = 2 or 3, while the augmented matrix

(A|b) =
(
A1 b1
A2 b2

)
∈MR(3, 4) has rk(A) ≤ rk(A|b) ≤ 3, so there are 3 cases.

Case 1: rk(A) = rk(A|b) = 2: this means that the line and the plane have infinitely many
common points: the line is contained in π: l ⊂ π.

To be more precise this means that the cartesian equation defining the plane is a linear

combination of the cartesian equation defining the line. In formula, let
{
α1x+ β1y + γ1z = δ1
α2x+ β2y + γ2z = δ2

be cartesian equations of the line, then there exists λ, µ ∈ R (not both zero) such that π
is given by the equation:

λ(α1x+ β1y + γ1z − δ1) + µ(α2x+ β2y + γ2z − δ2) = 0 (6.2)

Definition 6.4. Letting λ, µ vary in R (not both zero) the equation (6.2) describes all

planes containing the line l =
{
α1x+ β1y + γ1z = δ1
α2x+ β2y + γ2z = δ2

. This is called the sheaf of planes

through l.

Case 2: rk(A) = 2 and rk(A|b) = 3: this means that the line and the plane have no
common points, and that the direction of the line Sol(A1|0) is contained in the direction
of the plane Sol(A2|0), so the line and the plane are parallel.

Case 3: rk(A) = 3 = rk(A|b): the line and the plane have a single common point, so the
line and the plane are incident.
Remark. Using the same reasoning above, having parametric equations of the line l =
P1 + v1R and of the plane π = P2 + v2R + v3R, we can read the three cases as follows:
Case 1, l ⊂ π: rk(v1|v2|v3) = 2 = rk(v1|v2|v3|P2 − P1).
Case 2, line and plane are parallel: rk(v1|v2|v3) = 2 and rk(v1|v2|v3|P2 − P1) = 3.
Case 3, line and plane are incident: rk(v1|v2|v3) = 3.
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Example. • The line l =
{
x− y = −1
x− z = −2 is contained in the plane π = {x+y−2z = −3},

indeed

rk

 1 −1 0 −1
1 0 −1 −2
1 1 −2 −3

 = rk

 1 −1 0 −1
0 1 −1 −1
0 2 −2 −2

 = 2

• The line l =
{
x− y = −1
x− z = −2 and the plane π =

( 1
0
1

)
+
( 1

2
3

)
R +

( 1
1
−3

)
R are incident,

indeed by plugging in the equations of π into those of l we get a single solution (for s, t){
(1 + s+ t)− (0 + 2s+ t) = −1
(1 + s+ t)− (1 + 3s− 3t) = −2 ↔

{
s = 2
−2s+ 4t = −2 ↔

{
s = 2
t = 1

2

• The line =
( 1

0
1

)
+
( 1

2
3

)
R and the plane π = x+y−z = 10 parallel, indeed by plugging

in the equations of l into that of π we get an impossible equation: 10 = (1 + t) + (0 +
2t)− (1 + 3t) = 2.

Plane - plane

Let π1 = Sol(A1|b1) and π2 = Sol(A2|b2) be planes.
The matrix A :=

(
A1
A2

)
∈MR(2, 3) has rank rk(A) = 1 or 2, while the augmented matrix

(A|b) =
(
A1 b1
A2 b2

)
∈MR(2, 4) has rk(A) ≤ rk(A|b) ≤ 2, so there are 3 cases.

Case 1: rk(A) = rk(A|b) = 1: this means that the linear systems A1x = b1 and A2x = b2
are equivalent, so π1 = π2: they are coincident planes.

Case 2: rk(A) = 1 and rk(A|b) = 2: by the Rouché-Capelli Theorem (1.11) the planes do
not have common points, but they have same directions (dim Sol(A|0) = 2 = dim Sol(A1|0) =
dim Sol(A2|0) implies Sol(A1|0) = Sol(A2|0)) so π1 and π2 are parallel planes.

To be more precise, both linear systems defining the planes consists of a single equation,
and the fact that rk(A) = 1, means that the equations are of the form:

π1 : αx+ βy + γz = δ1 π2 : αx+ βy + γz = δ2

So if δ1 = δ2 the planes coincides, otherwise they are parallel.
Definition 6.5. Let π be the plane of equation

αx+ βy + γz = δ.

Letting δ vary in R we describe all planes parallel to π. This is a parallel sheaf of planes.
Case 3: rk(A) = 2 = rk(A|b): by the Rouché-Capelli Theorem (1.11) the have a common
line: π1 and π2 are incident planes.

Remark. As above, having parametric equations of the planes π1 = P1 + v1R + v2R and
of the plane π2 = P2 + w1R + w2R, we can read the three cases as follows:
Case 1, coincident planes: rk(v1|v2|w1|w2) = 2 = rk(v1|v2|w1|w2|P2 − P1).
Case 2, parallel planes: rk(v1|v2|w1|w2) = 2 and rk(v1|v2|w1|w2|P2 − P1) = 3.
Case 3, incident planes: rk(v1|v2|w1|w2) = 3.
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6.3.1 Orthogonality
Definition 6.6. Two affine subspaces S1 = Sol(A1|b1) and S2 = Sol(A2|b2) are orthogonal
if the corresponding directions S1,0 = Sol(A1|0) and S2,0 = Sol(A2|0) are orthogonal vector
subspaces of the euclidean space R3 (see Definition 5.5).

Example. • The lines l1 =
( 10

11
12

)
+
( 1

2
3

)
R and l2 =

(
−7
9
−11

)
+
( 1

1
−1

)
R are orthogonal, indeed

〈(1, 2, 3)T , (1, 1,−1)T 〉 = 0.

• Let l be the line of equation l =
{
x+ y = 10
2y + 2z = −17 , then any plane of parametric

equation P +
( 1

1
0

)
R +

( 0
2
2

)
R (P ∈ R3) is orthogonal to l.

• Let π be the plane of equation π = x − 2y + 5z = 20, then any line of parametric
equation P +

( 1
−2
5

)
R (P ∈ R3) is orthogonal to π.

Remark. Let π := {αx+βy+γz = δ} ⊂ R3 be a plane, the vector (α, β, γ)T is orthogonal
to π and it is a normal vector of the plane. It is unique, up to scaling.

6.4 Distances
Definition 6.7. Let P = (xP , yP , zP )T , Q = (xQ, yQ, zQ)T ∈ R3 be two points. Their
distance is

d(P,Q) = ||P −Q|| =
√

(xP − xQ)2 + (yP − yQ)2 + (zP − zQ)2 (6.3)

Let S1, S2 ⊂ R3 be affine subspaces, then d(S1, S2) := min{d(P,Q) | P ∈ S1, Q ∈ S2}.

For example, the distance between a point P and a plane π is d(P, π) := min{d(P,Q) |
Q ∈ π} = d(P, P̂ ), where P̂ is the orthogonal projection of P onto π, i.e. it is the
intersection point between π and the line l orthogonal to π and passing through P .

Point - plane

Let P = (xP , yP , zP )T be a point and π = {(x, y, z)T ∈ R3 | αx+βy+γz = δ} be a plane.
We want to compute d(P, π) = d(P, P̂ ), where P̂ is as above.

Being orthogonal to π and passing through P , the line l has parametric equation
l = P +

( α
β
γ

)
R, so P̂ = P + t̂

( α
β
γ

)
for a t̂ ∈ R, which is determined by imposing P̂ ∈ π:

δ = α(xP + t̂α) + β(yP + t̂β) + γ(zP + t̂γ) = (αxP + βyP + γzP ) + t̂(α2 + β2 + γ2)

Thus, t̂ = δ − (αxP + βyP + γzP )
(α2 + β2 + γ2) and d(P, P̂ ) = ||P+ t̂(α, β, γ)T−P || = |t̂|·||(α, β, γ)T ||:

d(P, π) = |αxP + βyP + γzP − δ|√
α2 + β2 + γ2
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Point - line

Let P = (xP , yP , zP )T be a point and l ⊂ R3 be a line. The distance between them is
d(P, l) := min{d(P,Q) | Q ∈ l} = d(P, Q̂), where Q̂ is the orthogonal projection of P
onto l, and one can determine the distance d(P, Q̂) arguing as above, but we prefer to use
a different approach to get a simple formula.

Let l = Q+ vR be a parametric equation of l and define w := Q− P , so that P,Q, Q̂
are the vertices of a right triangle (with the right angle in Q̂) and hypotenuse v. Let θ be
the angle between v and w (the one in Q)2, then d(P, Q̂) = ||w|| · sin θ = ||w||·||v||·sin θ

||v|| :

d(P, l) = ||v × (Q− P )||
||v||

Example. Let P = (1, 2, 3)T ∈ R3, let π ⊂ R3 be the plane of equation x− 3y + z = 10,

and let l ⊂ R3 be the line of equations l =
{
x− 3y + z = 10
x+ y = 10 . The distance d(P, π) is

d(P, π) = |1 · 1 + (−3) · 2 + 1 · 3− 10|√
12 + (−3)2 + 12

= 12√
11

while the distance d(P, l) is

l =

 0
−1
1

+

1
1
2

R =⇒ d(P, l) = ||(1, 1, 2)T × (1, 3, 2)T ||
||(1, 1, 2)T || =

√
20√
6
.

Line - line

Let l1, l2 ⊂ R3 be lines. If they meet (l1 ∩ l2 6= ∅), then d(l1, l2) = 0. If they do not meet,
they are either parallel or skew.

Assume that l1 and l2 are parallel: l1 = P1+vR, l2 = P2+vR. Then d(l1, l2) = d(P1, l2):

d(l1, l2) = ||(P2 − P1)× v||
||v||

Assume that l1 and l2 are skew: l1 = P1 + v1R, l2 = P2 + v2R. Let π be the unique
plane parallel to l1 and containing l2: π = P2 + v2R + v1R, so that d(l1, l2) = d(P1, π).

To apply the previous formula, we need a cartesian equation of π. A normal vector is
v1 × v2 =

( α
β
γ

)
, so that π = αx + βy + γz = δ, where δ is determined by the fact that

P2 = (xP2 , yP2 , zP2)T ∈ π: δ = αxP2 + βyP2 + γzP2 = 〈v1 × v2, P2〉, so

d(P1, π) = |αP1,x + βP1,y + γP1,z − δ|√
(α2 + β2 + γ2)

= |〈v1 × v2, P1〉 − 〈v1 × v2, P2〉|
||v1 × v2||

We get
d(l1, l2) = |〈v1 × v2, P1 − P2〉|

||v1 × v2||
2As remarked on page 67, sin θ ≥ 0.
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Example. The lines l1 =
{
x− y = −1
x− z = −2 and l2 =

{
−2x+ y + z = 4
y − z = −2 are parallel lines:

l1 =
( 0

1
2

)
+
( 1

1
1

)
R, l2 =

( −1
0
2

)
+
( 1

1
1

)
R, and their distance is

d(l1, l2) = ||(1, 1, 0)T × (1, 1, 1)T ||
||(1, 1, 1)T || =

√
2√
3

The lines l1 =
{
x− y = −1
x− z = −2 and l2 =

( 0
4
−3

)
+
( 1

2
3

)
R are skew lines, and their distance is

d(l1, l2) = |〈(1, 1, 1)T × (1, 2, 3)T , (0,−3, 5)T 〉|
||(1, 1, 1)T × (1, 2, 3)T || = |〈(1,−2, 1)T , (0,−3, 5)T 〉|

||(1,−2, 1)T || = 11√
6

Line - plane

Let l ⊂ R3 be a line, let π ⊂ R3 be a plane, and let P1 ∈ l, then:

d(l, π) =
 0 if l ∩ π 6= ∅

d(P1, π) if l and π are parallel

Plane - plane

Let π1, π2 ⊂ R3 be planes, and let P1 ∈ π1, then:

d(π1, π2) =
 0 if π1 ∩ π2 6= ∅

d(P1, π2) if π1 and π2 are parallel
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